Currently displaying 1 – 20 of 31

Showing per page

Order by Relevance | Title | Year of publication

Upper bounds for the degrees of decomposable forms of given discriminant

K. Győry — 1994

Acta Arithmetica

1. Introduction. In our paper [5] a sharp upper bound was given for the degree of an arbitrary squarefree binary form F ∈ ℤ[X,Y] in terms of the absolute value of the discriminant of F. Further, all the binary forms were listed for which this bound cannot be improved. This upper estimate has been extended by Evertse and the author [3] to decomposable forms in n ≥ 2 variables. The bound obtained in [3] depends also on n and is best possible only for n = 2. The purpose of the present paper is to establish...

Some applications of decomposable form equations to resultant equations

K. Győry — 1993

Colloquium Mathematicae

1. Introduction. The purpose of this paper is to establish some general finiteness results (cf. Theorems 1 and 2) for resultant equations over an arbitrary finitely generated integral domain R over ℤ. Our Theorems 1 and 2 improve and generalize some results of Wirsing [25], Fujiwara [6], Schmidt [21] and Schlickewei [17] concerning resultant equations over ℤ. Theorems 1 and 2 are consequences of a finiteness result (cf. Theorem 3) on decomposable form equations over R. Some applications of Theorems...

On prime factors of integers of the form (ab+1)(bc+1)(ca+1)

K. GyőryA. Sárközy — 1997

Acta Arithmetica

1. Introduction. For any integer n > 1 let P(n) denote the greatest prime factor of n. Győry, Sárközy and Stewart [5] conjectured that if a, b and c are pairwise distinct positive integers then (1) P((ab+1)(bc+1)(ca+1)) tends to infinity as max(a,b,c) → ∞. In this paper we confirm this conjecture in the special case when at least one of the numbers a, b, c, a/b, b/c, c/a has bounded prime factors. We prove our result in a quantitative form by showing that if is a finite set of triples (a,b,c)...

Page 1 Next

Download Results (CSV)