Representations with cohomology in the discrete spectrum of subgroups of SO ( n , 1 ) ( Z ) and Lefschetz numbers

Jürgen Rohlfs; Birgit Speh

Annales scientifiques de l'École Normale Supérieure (1987)

  • Volume: 20, Issue: 1, page 89-136
  • ISSN: 0012-9593

How to cite

top

Rohlfs, Jürgen, and Speh, Birgit. "Representations with cohomology in the discrete spectrum of subgroups of ${\rm SO}(n,1)({Z})$ and Lefschetz numbers." Annales scientifiques de l'École Normale Supérieure 20.1 (1987): 89-136. <http://eudml.org/doc/82194>.

@article{Rohlfs1987,
author = {Rohlfs, Jürgen, Speh, Birgit},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {cuspidal automorphic forms; arithmetic subgroup; semisimple algebraic group; cohomology groups; symmetric space; relative Lie algebra cohomology; irreducible unitary representations; finite multiplicities; square integrable cohomology; cusp cohomology; discrete series representation; Selberg trace formula; Lefschetz number; Borel-Serre compactification},
language = {eng},
number = {1},
pages = {89-136},
publisher = {Elsevier},
title = {Representations with cohomology in the discrete spectrum of subgroups of $\{\rm SO\}(n,1)(\{Z\})$ and Lefschetz numbers},
url = {http://eudml.org/doc/82194},
volume = {20},
year = {1987},
}

TY - JOUR
AU - Rohlfs, Jürgen
AU - Speh, Birgit
TI - Representations with cohomology in the discrete spectrum of subgroups of ${\rm SO}(n,1)({Z})$ and Lefschetz numbers
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1987
PB - Elsevier
VL - 20
IS - 1
SP - 89
EP - 136
LA - eng
KW - cuspidal automorphic forms; arithmetic subgroup; semisimple algebraic group; cohomology groups; symmetric space; relative Lie algebra cohomology; irreducible unitary representations; finite multiplicities; square integrable cohomology; cusp cohomology; discrete series representation; Selberg trace formula; Lefschetz number; Borel-Serre compactification
UR - http://eudml.org/doc/82194
ER -

References

top
  1. [A] J. ARTHUR, Lecture at The Institute for Advanced Study, April 1984. 
  2. [B-B] M. W. BALDONI SILVA and D. BARBASCH, The Unitary Spectrum for Real Rank One Groups (Invent. math., Vol. 72, 1983, pp. 27-55). Zbl0561.22009MR84k:22022
  3. [B] A. BOREL, Stable Real Cohomology of Arithmetic Groups II, In J. HANO et al. Eds. (Manifolds and Lie groups. Progress in Math., Vol. 14, pp. 21-55, Boston Basel Stuttgart : Birkhöuser, 1981). Zbl0483.57026MR83h:22023
  4. [Br] F. BRUHAT, p-Adic Groups (Proc. Symp. Pure Math. IX. A.M.S., 1966, pp. 63-70). Zbl0193.49002MR35 #4220
  5. [Bo] N. BOURBAKI, Groupes et algèbres de Lie, Chap. 4, 5 et 6, Herman, Paris, 1968. 
  6. [B-M] D. BARBASCH and H. MOSCOVICI, L2-Index and the Selberg Trace Formula (J. Funct. Anal., Vol. 53, No. 2, 1983, pp. 151-201). Zbl0537.58039MR85j:58137
  7. [B-S] A. BOREL and J.-P. SERRE, Théorèmes de finitude en cohomologie galoisienne (Comment. Math. Helv., Vol. 39, 1964, pp. 111-149). Zbl0143.05901MR31 #5870
  8. [B-W] A. BOREL and N. WALLACH, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups (Annals of Math. Studies, 1980, Princeton University Press). Zbl0443.22010MR83c:22018
  9. [C] L. CLOZEL, On Limit Multiplicities of Discrete Series Representations in the Space of Automorphic Forms (Invent. math., Vol. 83, 1986, pp. 265-284). Zbl0582.22012MR87g:22012
  10. [D-W] D. DE GEORGE and N. WALLACH, Limit Formulas for Multiplicities in L²(Γ) (Ann. of Math., Vol. 107, 1978, pp. 133-150). Zbl0397.22007MR58 #11231
  11. [E] M. EICHLER, Quadratische Formen und orthogonale Gruppen (Grundlehren, Band 63, 1974, Springer-Verlag). Zbl0277.10017MR50 #4484
  12. [H1] G. HARDER, A Gauss-Bonnet Theorem for Discrete Arithmetically Defined Groups (Ann. Scient. Éc. Norm. Sup., (4), 1971, pp. 409-455). Zbl0232.20088MR46 #8255
  13. [H2] G. HARDER, On the Cohomology of Discrete Arithmetically Defined Groups (Proc. Int. Colloq. on Discrete Subgroups and Applications to Moduli, Bombay, 1973, Oxford Univ. Press, 1975, pp. 129-160). Zbl0317.57022MR54 #12976
  14. [H3] G. HARDER, On the Cohomology of SL2 (O). Lie Groups and their Representations (Proc. of the summer school on group repres., London, Hilger, 1975, pp. 139-150). Zbl0395.57028MR54 #12977
  15. [H4] G. HARDER, Der Rang-Eins Beitrag zur Eisensteinkohomologie, Bonn, 1985, preprint. 
  16. [H-Ch] HARISH-CHANDRA, Automorphic Forms on Semisimple Lie Groups (Lecture Notes in Math., No. 62, 1968, Springer Verlag). Zbl0186.04702MR38 #1216
  17. [J] B. W. JONES, The Arithmetic Theory of Quadratic Forms, Wiley and Sons, New York, 1950. Zbl0041.17505MR12,244a
  18. [K] B. KOSTANT, Lie Algebra Cohomology and the Generalized Borel-Weil Theorem (Ann. Math., Vol. 74, 1961, pp. 329-387). Zbl0134.03501MR26 #265
  19. [L1] R. LANGLANDS, Dimensions of Spaces of Automorphic Forms (Proc. Symp. Pure Math. IX. A.M.S., 1966, pp. 253-257). Zbl0215.11802MR35 #3010
  20. [L2] R. LANGLANDS, On the Functional Equation Satisfied by Eisenstein Series (Lecture Notes in Math., No. 544, 1976, Springer Verlag). Zbl0332.10018MR58 #28319
  21. [L] T. Y. LAM, The Algebraic Theory of Quadratic Forms, Benjamin, Reading, Massachusetts, 1973. Zbl0259.10019MR53 #277
  22. [L-S] R. LEE and J. SCHWERMER, The Lefschetz Number of an Involution on the Space of Cusp Forms of SL3 (Inventiones Math., Vol. 73, 1983, pp. 189-239). Zbl0525.10014MR84k:22016
  23. [M] H. MINKOWSKI, Gesammelte Abhandlungen I, Teubner, Leipzig, Berlin, 1911. 
  24. [N] Y. A. NISNEVICH, On Certain Arithmetic and Cohomological Invariants of Semisimple Groups, preprint, 1983, Stony Brook. 
  25. [R1] J. ROHLFS, The Lefschetz Number of an Involution on the Space of Classes of Positive Definite Quadratic Forms (Comment. Math. Helv., Vol. 56, 1981, pp. 272-296). Zbl0474.10019MR83a:10037
  26. [R2] J. ROHLFS, On the Cuspidal Cohomology of the Bianchi Modular Groups (Math. Z., Vol. 188, 1985, pp. 253-269). Zbl0535.20028MR86e:11042
  27. [R3] J. ROHLFS, Lefschetz Numbers for Arithmetic Groups, in preparation. Zbl0762.11023
  28. [Se1] J.-P. SERRE, Cohomologie Galoisienne (Lecture Notes in Math., No. 5, 1965, Springer Verlag). Zbl0136.02801MR34 #1328
  29. [Se2] J.-P. SERRE, Le problème des groupes de congruence pour SL2 (Ann. Math., Vol. 92, 1970, pp. 489-527). Zbl0239.20063MR42 #7671
  30. [Se3] J.-P. SERRE, Cours d'arithmetique, Presses Universitaires de France, Paris, 1970. Zbl0225.12002MR41 #138
  31. [S1] B. SPEH, Induced Representations and the Cohomology of Discrete Subgroups (Duke Math. J., Vol. 49, 1982, pp. 1115-1127). Zbl0505.22014MR85c:22014
  32. [S2] B. SPEH, Automorphic Representations and the Euler-Poincaré Characteristic of Arithmetic Groups, Preprint, 1984. 
  33. [T] J. TITS, Reductive Groups Over Local Fields. In Automorphic Forms, Representations and L-Functions (Proceedings of symp. in pure math., Vol. 33, Part. 1, pp. 29-69, 1979). Zbl0415.20035MR80h:20064
  34. [V] D. VOGAN, Representations of Real Reductive Lie Groups (Progress in Math., Vol. 15, Boston-Basel-Stuttgart : Birkhöuser, 1981). Zbl0469.22012MR83c:22022
  35. [V-Z] D. VOGAN and G. ZUCKERMAN, Unitary Representations with Nonzero Cohomology (Compositio Math., Vol. 53, 1984, pp. 51-90). Zbl0692.22008MR86k:22040

NotesEmbed ?

top

You must be logged in to post comments.