Representations with cohomology in the discrete spectrum of subgroups of SO ( n , 1 ) ( Z ) and Lefschetz numbers

Jürgen Rohlfs; Birgit Speh

Annales scientifiques de l'École Normale Supérieure (1987)

  • Volume: 20, Issue: 1, page 89-136
  • ISSN: 0012-9593

How to cite

top

Rohlfs, Jürgen, and Speh, Birgit. "Representations with cohomology in the discrete spectrum of subgroups of ${\rm SO}(n,1)({Z})$ and Lefschetz numbers." Annales scientifiques de l'École Normale Supérieure 20.1 (1987): 89-136. <http://eudml.org/doc/82194>.

@article{Rohlfs1987,
author = {Rohlfs, Jürgen, Speh, Birgit},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {cuspidal automorphic forms; arithmetic subgroup; semisimple algebraic group; cohomology groups; symmetric space; relative Lie algebra cohomology; irreducible unitary representations; finite multiplicities; square integrable cohomology; cusp cohomology; discrete series representation; Selberg trace formula; Lefschetz number; Borel-Serre compactification},
language = {eng},
number = {1},
pages = {89-136},
publisher = {Elsevier},
title = {Representations with cohomology in the discrete spectrum of subgroups of $\{\rm SO\}(n,1)(\{Z\})$ and Lefschetz numbers},
url = {http://eudml.org/doc/82194},
volume = {20},
year = {1987},
}

TY - JOUR
AU - Rohlfs, Jürgen
AU - Speh, Birgit
TI - Representations with cohomology in the discrete spectrum of subgroups of ${\rm SO}(n,1)({Z})$ and Lefschetz numbers
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1987
PB - Elsevier
VL - 20
IS - 1
SP - 89
EP - 136
LA - eng
KW - cuspidal automorphic forms; arithmetic subgroup; semisimple algebraic group; cohomology groups; symmetric space; relative Lie algebra cohomology; irreducible unitary representations; finite multiplicities; square integrable cohomology; cusp cohomology; discrete series representation; Selberg trace formula; Lefschetz number; Borel-Serre compactification
UR - http://eudml.org/doc/82194
ER -

References

top
  1. [A] J. ARTHUR, Lecture at The Institute for Advanced Study, April 1984. 
  2. [B-B] M. W. BALDONI SILVA and D. BARBASCH, The Unitary Spectrum for Real Rank One Groups (Invent. math., Vol. 72, 1983, pp. 27-55). Zbl0561.22009MR84k:22022
  3. [B] A. BOREL, Stable Real Cohomology of Arithmetic Groups II, In J. HANO et al. Eds. (Manifolds and Lie groups. Progress in Math., Vol. 14, pp. 21-55, Boston Basel Stuttgart : Birkhöuser, 1981). Zbl0483.57026MR83h:22023
  4. [Br] F. BRUHAT, p-Adic Groups (Proc. Symp. Pure Math. IX. A.M.S., 1966, pp. 63-70). Zbl0193.49002MR35 #4220
  5. [Bo] N. BOURBAKI, Groupes et algèbres de Lie, Chap. 4, 5 et 6, Herman, Paris, 1968. 
  6. [B-M] D. BARBASCH and H. MOSCOVICI, L2-Index and the Selberg Trace Formula (J. Funct. Anal., Vol. 53, No. 2, 1983, pp. 151-201). Zbl0537.58039MR85j:58137
  7. [B-S] A. BOREL and J.-P. SERRE, Théorèmes de finitude en cohomologie galoisienne (Comment. Math. Helv., Vol. 39, 1964, pp. 111-149). Zbl0143.05901MR31 #5870
  8. [B-W] A. BOREL and N. WALLACH, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups (Annals of Math. Studies, 1980, Princeton University Press). Zbl0443.22010MR83c:22018
  9. [C] L. CLOZEL, On Limit Multiplicities of Discrete Series Representations in the Space of Automorphic Forms (Invent. math., Vol. 83, 1986, pp. 265-284). Zbl0582.22012MR87g:22012
  10. [D-W] D. DE GEORGE and N. WALLACH, Limit Formulas for Multiplicities in L²(Γ) (Ann. of Math., Vol. 107, 1978, pp. 133-150). Zbl0397.22007MR58 #11231
  11. [E] M. EICHLER, Quadratische Formen und orthogonale Gruppen (Grundlehren, Band 63, 1974, Springer-Verlag). Zbl0277.10017MR50 #4484
  12. [H1] G. HARDER, A Gauss-Bonnet Theorem for Discrete Arithmetically Defined Groups (Ann. Scient. Éc. Norm. Sup., (4), 1971, pp. 409-455). Zbl0232.20088MR46 #8255
  13. [H2] G. HARDER, On the Cohomology of Discrete Arithmetically Defined Groups (Proc. Int. Colloq. on Discrete Subgroups and Applications to Moduli, Bombay, 1973, Oxford Univ. Press, 1975, pp. 129-160). Zbl0317.57022MR54 #12976
  14. [H3] G. HARDER, On the Cohomology of SL2 (O). Lie Groups and their Representations (Proc. of the summer school on group repres., London, Hilger, 1975, pp. 139-150). Zbl0395.57028MR54 #12977
  15. [H4] G. HARDER, Der Rang-Eins Beitrag zur Eisensteinkohomologie, Bonn, 1985, preprint. 
  16. [H-Ch] HARISH-CHANDRA, Automorphic Forms on Semisimple Lie Groups (Lecture Notes in Math., No. 62, 1968, Springer Verlag). Zbl0186.04702MR38 #1216
  17. [J] B. W. JONES, The Arithmetic Theory of Quadratic Forms, Wiley and Sons, New York, 1950. Zbl0041.17505MR12,244a
  18. [K] B. KOSTANT, Lie Algebra Cohomology and the Generalized Borel-Weil Theorem (Ann. Math., Vol. 74, 1961, pp. 329-387). Zbl0134.03501MR26 #265
  19. [L1] R. LANGLANDS, Dimensions of Spaces of Automorphic Forms (Proc. Symp. Pure Math. IX. A.M.S., 1966, pp. 253-257). Zbl0215.11802MR35 #3010
  20. [L2] R. LANGLANDS, On the Functional Equation Satisfied by Eisenstein Series (Lecture Notes in Math., No. 544, 1976, Springer Verlag). Zbl0332.10018MR58 #28319
  21. [L] T. Y. LAM, The Algebraic Theory of Quadratic Forms, Benjamin, Reading, Massachusetts, 1973. Zbl0259.10019MR53 #277
  22. [L-S] R. LEE and J. SCHWERMER, The Lefschetz Number of an Involution on the Space of Cusp Forms of SL3 (Inventiones Math., Vol. 73, 1983, pp. 189-239). Zbl0525.10014MR84k:22016
  23. [M] H. MINKOWSKI, Gesammelte Abhandlungen I, Teubner, Leipzig, Berlin, 1911. 
  24. [N] Y. A. NISNEVICH, On Certain Arithmetic and Cohomological Invariants of Semisimple Groups, preprint, 1983, Stony Brook. 
  25. [R1] J. ROHLFS, The Lefschetz Number of an Involution on the Space of Classes of Positive Definite Quadratic Forms (Comment. Math. Helv., Vol. 56, 1981, pp. 272-296). Zbl0474.10019MR83a:10037
  26. [R2] J. ROHLFS, On the Cuspidal Cohomology of the Bianchi Modular Groups (Math. Z., Vol. 188, 1985, pp. 253-269). Zbl0535.20028MR86e:11042
  27. [R3] J. ROHLFS, Lefschetz Numbers for Arithmetic Groups, in preparation. Zbl0762.11023
  28. [Se1] J.-P. SERRE, Cohomologie Galoisienne (Lecture Notes in Math., No. 5, 1965, Springer Verlag). Zbl0136.02801MR34 #1328
  29. [Se2] J.-P. SERRE, Le problème des groupes de congruence pour SL2 (Ann. Math., Vol. 92, 1970, pp. 489-527). Zbl0239.20063MR42 #7671
  30. [Se3] J.-P. SERRE, Cours d'arithmetique, Presses Universitaires de France, Paris, 1970. Zbl0225.12002MR41 #138
  31. [S1] B. SPEH, Induced Representations and the Cohomology of Discrete Subgroups (Duke Math. J., Vol. 49, 1982, pp. 1115-1127). Zbl0505.22014MR85c:22014
  32. [S2] B. SPEH, Automorphic Representations and the Euler-Poincaré Characteristic of Arithmetic Groups, Preprint, 1984. 
  33. [T] J. TITS, Reductive Groups Over Local Fields. In Automorphic Forms, Representations and L-Functions (Proceedings of symp. in pure math., Vol. 33, Part. 1, pp. 29-69, 1979). Zbl0415.20035MR80h:20064
  34. [V] D. VOGAN, Representations of Real Reductive Lie Groups (Progress in Math., Vol. 15, Boston-Basel-Stuttgart : Birkhöuser, 1981). Zbl0469.22012MR83c:22022
  35. [V-Z] D. VOGAN and G. ZUCKERMAN, Unitary Representations with Nonzero Cohomology (Compositio Math., Vol. 53, 1984, pp. 51-90). Zbl0692.22008MR86k:22040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.