Boundary Behavior of Harmonic Functions on Symmetric Spaces: Maximal Estimates for Poisson Integrals.
Inventiones mathematicae (1983)
- Volume: 74, page 63-84
- ISSN: 0020-9910; 1432-1297/e
Access Full Article
topHow to cite
topStein, E.M.. "Boundary Behavior of Harmonic Functions on Symmetric Spaces: Maximal Estimates for Poisson Integrals.." Inventiones mathematicae 74 (1983): 63-84. <http://eudml.org/doc/143062>.
@article{Stein1983,
author = {Stein, E.M.},
journal = {Inventiones mathematicae},
keywords = {boundary; symmetric space; harmonic functions; Poisson integrals},
pages = {63-84},
title = {Boundary Behavior of Harmonic Functions on Symmetric Spaces: Maximal Estimates for Poisson Integrals.},
url = {http://eudml.org/doc/143062},
volume = {74},
year = {1983},
}
TY - JOUR
AU - Stein, E.M.
TI - Boundary Behavior of Harmonic Functions on Symmetric Spaces: Maximal Estimates for Poisson Integrals.
JO - Inventiones mathematicae
PY - 1983
VL - 74
SP - 63
EP - 84
KW - boundary; symmetric space; harmonic functions; Poisson integrals
UR - http://eudml.org/doc/143062
ER -
Citations in EuDML Documents
top- Ewa Damek, Andrzej Hulanicki, Boundaries and the Fatou theorem for subelliptic second order operators on solvable Lie groups
- Olof Svensson, On generalized Fatou theorems for the square root of the Poisson kernel and in rank one symmetric space
- Ewa Damek, Andrzej Hulanicki, Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group
- Ewa Damek, Maximal functions related to subelliptic operators invariant under an action of a nilpotent Lie group
- Paweł Głowacki, Waldemar Hebisch, Pointwise estimates for densities of stable semigroups of measures
- Andrzej Hulanicki, Estimates for the Poisson kernels and a Fatou type theorem applications to analysis on Siegel domains
- Paweł Głowacki, Lipschitz continuity of densities of stable semigroups of measures
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.