Boundaries and the Fatou theorem for subelliptic second order operators on solvable Lie groups

Ewa Damek; Andrzej Hulanicki

Colloquium Mathematicae (1995)

  • Volume: 68, Issue: 1, page 121-140
  • ISSN: 0010-1354

How to cite

top

Damek, Ewa, and Hulanicki, Andrzej. "Boundaries and the Fatou theorem for subelliptic second order operators on solvable Lie groups." Colloquium Mathematicae 68.1 (1995): 121-140. <http://eudml.org/doc/210285>.

@article{Damek1995,
author = {Damek, Ewa, Hulanicki, Andrzej},
journal = {Colloquium Mathematicae},
keywords = {Fatou theorem; solvable Lie group; nilpotent Lie group; Abelian Lie group; Lie algebra; subelliptic operator; harmonic; probability measure; Poisson integral; admissible convergence; boundary; maximal function},
language = {eng},
number = {1},
pages = {121-140},
title = {Boundaries and the Fatou theorem for subelliptic second order operators on solvable Lie groups},
url = {http://eudml.org/doc/210285},
volume = {68},
year = {1995},
}

TY - JOUR
AU - Damek, Ewa
AU - Hulanicki, Andrzej
TI - Boundaries and the Fatou theorem for subelliptic second order operators on solvable Lie groups
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 1
SP - 121
EP - 140
LA - eng
KW - Fatou theorem; solvable Lie group; nilpotent Lie group; Abelian Lie group; Lie algebra; subelliptic operator; harmonic; probability measure; Poisson integral; admissible convergence; boundary; maximal function
UR - http://eudml.org/doc/210285
ER -

References

top
  1. [Ch] M. Christ, Hilbert transforms along curves I. Nilpotent groups, Ann. of Math. (2) 122 (1985), 575-596. Zbl0593.43011
  2. [Chr] M. Christ, The strong maximal function on a nilpotent group, Trans. Amer. Math. Soc. 331 (1992), 1-13. Zbl0765.43002
  3. [CW] R. R. Coifman and G. Weiss, Operators associated with representations of amenable groups, singular integrals induced by ergodic flows, the rotations method and multipliers, Studia Math. 47 (1973), 285-303. Zbl0297.43010
  4. [D] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, ibid. 89 (1988), 169-196. Zbl0675.22005
  5. [DH] E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on semi-direct products of nilpotent and abelian groups, J. Reine Angew. Math. 411 (1990), 1-38. Zbl0699.22012
  6. [K] A. Korányi, Harmonic functions on symmetric spaces, in: Symmetric Spaces, Birkhäuser, Basel, 1972, 379-412. Zbl0291.43016
  7. [NS] A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. in Math. 54 (1984), 83-106. Zbl0546.42017
  8. [R] F. Ricci, Singular integrals on n , Tempus lectures held at the Institute of Mathematics of Wrocław University, 1991. 
  9. [Sj] P. Sjögren, Admissible convergence of Poisson integrals in symmetric spaces, Ann. of Math. 124 (1986), 313-335. Zbl0646.31008
  10. [S] J. Sołowiej, The Fatou theorem for NA groups-a negative result, Colloq. Math. 67 (1994), 131-145. Zbl0839.22009
  11. [St] E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: Maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.