Boundaries and the Fatou theorem for subelliptic second order operators on solvable Lie groups
Colloquium Mathematicae (1995)
- Volume: 68, Issue: 1, page 121-140
- ISSN: 0010-1354
Access Full Article
topHow to cite
topReferences
top- [Ch] M. Christ, Hilbert transforms along curves I. Nilpotent groups, Ann. of Math. (2) 122 (1985), 575-596. Zbl0593.43011
- [Chr] M. Christ, The strong maximal function on a nilpotent group, Trans. Amer. Math. Soc. 331 (1992), 1-13. Zbl0765.43002
- [CW] R. R. Coifman and G. Weiss, Operators associated with representations of amenable groups, singular integrals induced by ergodic flows, the rotations method and multipliers, Studia Math. 47 (1973), 285-303. Zbl0297.43010
- [D] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, ibid. 89 (1988), 169-196. Zbl0675.22005
- [DH] E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on semi-direct products of nilpotent and abelian groups, J. Reine Angew. Math. 411 (1990), 1-38. Zbl0699.22012
- [K] A. Korányi, Harmonic functions on symmetric spaces, in: Symmetric Spaces, Birkhäuser, Basel, 1972, 379-412. Zbl0291.43016
- [NS] A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. in Math. 54 (1984), 83-106. Zbl0546.42017
- [R] F. Ricci, Singular integrals on , Tempus lectures held at the Institute of Mathematics of Wrocław University, 1991.
- [Sj] P. Sjögren, Admissible convergence of Poisson integrals in symmetric spaces, Ann. of Math. 124 (1986), 313-335. Zbl0646.31008
- [S] J. Sołowiej, The Fatou theorem for NA groups-a negative result, Colloq. Math. 67 (1994), 131-145. Zbl0839.22009
- [St] E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: Maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83.