Estimates for the Poisson kernels and a Fatou type theorem applications to analysis on Siegel domains

Andrzej Hulanicki

Banach Center Publications (1995)

  • Volume: 34, Issue: 1, page 65-77
  • ISSN: 0137-6934

Abstract

top
This is a short description of some results obtained by Ewa Damek, Andrzej Hulanicki, Richard Penney and Jacek Zienkiewicz. They belong to harmonic analysis on a class of solvable Lie groups called NA. We apply our results to analysis on classical Siegel domains.

How to cite

top

Hulanicki, Andrzej. "Estimates for the Poisson kernels and a Fatou type theorem applications to analysis on Siegel domains." Banach Center Publications 34.1 (1995): 65-77. <http://eudml.org/doc/251298>.

@article{Hulanicki1995,
abstract = {This is a short description of some results obtained by Ewa Damek, Andrzej Hulanicki, Richard Penney and Jacek Zienkiewicz. They belong to harmonic analysis on a class of solvable Lie groups called NA. We apply our results to analysis on classical Siegel domains.},
author = {Hulanicki, Andrzej},
journal = {Banach Center Publications},
keywords = {Siegel domain; Poisson-Szegö integral; Poisson-Szegö kernel; boundary behaviour; approach regions; solvable Lie groups of type NA; second order degenerate elliptic operators; Poisson kernels; harmonic functions; Fatou type theorems; Furstenberg boundaries},
language = {eng},
number = {1},
pages = {65-77},
title = {Estimates for the Poisson kernels and a Fatou type theorem applications to analysis on Siegel domains},
url = {http://eudml.org/doc/251298},
volume = {34},
year = {1995},
}

TY - JOUR
AU - Hulanicki, Andrzej
TI - Estimates for the Poisson kernels and a Fatou type theorem applications to analysis on Siegel domains
JO - Banach Center Publications
PY - 1995
VL - 34
IS - 1
SP - 65
EP - 77
AB - This is a short description of some results obtained by Ewa Damek, Andrzej Hulanicki, Richard Penney and Jacek Zienkiewicz. They belong to harmonic analysis on a class of solvable Lie groups called NA. We apply our results to analysis on classical Siegel domains.
LA - eng
KW - Siegel domain; Poisson-Szegö integral; Poisson-Szegö kernel; boundary behaviour; approach regions; solvable Lie groups of type NA; second order degenerate elliptic operators; Poisson kernels; harmonic functions; Fatou type theorems; Furstenberg boundaries
UR - http://eudml.org/doc/251298
ER -

References

top
  1. [A] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. (2) 125 (1987), 495-536. Zbl0652.31008
  2. [Ch1] M. Christ, Hilbert transforms along curves I. Nilpotent groups, Ann. of Math. (2) 122 (1985), 575-596. Zbl0593.43011
  3. [Ch2] M. Christ, The strong maximal function on a nilpotent group, Trans. Amer. Math. Soc. 331(1) (1992), 1-13. Zbl0765.43002
  4. [CW] R. R. Coifman and G. Weiss, Operators associated with representations of amenable groups, singular integrals induced by ergodic flows, the rotations method and multipliers, Studia Math. 47 (1973), 285-303. Zbl0297.43010
  5. [D1] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, Studia Math. 89 (1988), 169-196. Zbl0675.22005
  6. [D2] E. Damek, Pointwise estimates on the Poisson kernel on NA groups by the Ancona method, to appear. Zbl0876.22008
  7. [DH1] E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on semi-direct products of nilpotent and Abelian groups, J. Reine Angew. Math. 411 (1990), 1-38. Zbl0699.22012
  8. [DH2] E. Damek and A. Hulanicki, Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group, Studia Math. 101 (1991), 33-68. Zbl0811.43001
  9. [DH3] E. Damek and A. Hulanicki, Boundaries and the Fatou theorem for subelliptic second order operators on solvable Lie groups, Colloq. Math. 68 (1995), 121-140. Zbl0839.22008
  10. [DHP1] E. Damek, A. Hulanicki, R. Penney, Admissible convergence for the Poisson-Szegö integrals, J. Geom. Anal. (to appear) Zbl0813.32030
  11. [DHP2] E. Damek, A. Hulanicki, R. Penney, Hua operators on bounded homogeneous domains in C n , preprint. Zbl0887.43005
  12. [DR1] E. Damek and F. Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc. 27 (1992), 139-142. Zbl0755.53032
  13. [DR2] E. Damek and F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal. 2 (1992), 213-248. Zbl0788.43008
  14. [H] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in Classical Domains, Vol. 6, Translations of Math. Monographs, Amer. Math. Soc., Providence, 1963. 
  15. [JK] K. Johnson, A. Korányi, The Hua operators on bounded symmetric domains of tube type, Ann. of Math. (2) 111 (1980), 589-608. Zbl0468.32007
  16. [K1] A. Korányi, The Poisson integral for generalized halfplanes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332-350. 
  17. [K2] A. Korányi, Boundary behavior of Poisson integrals on symmetric spaces, Trans. Amer. Math. Soc. 140 (1969), 393-409. Zbl0179.15103
  18. [K3] A. Korányi, Harmonic functions on symmetric spaces, in: Symmetric Spaces, Basel-New York 1972. 
  19. [KM] A. Korányi and P. Malliavin, Poisson formula and compound diffusion associated to overdetermined elliptic system on the Siegel half-plane of rank two, Acta Math. 134 (1975), 185-209. Zbl0318.60066
  20. [KS1] A. Korányi, E. M. Stein, Fatou's theorem for generalized half-planes, Ann. Scuola Norm. Sup. Pisa 22 (1968), 107-112. 
  21. [KS2] A. Korányi, E. M. Stein, H 2 -spaces of generalized half-planes, Studia Math. 44 (1972), 379-388. 
  22. [NS] A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. Math. 54 (1984), 83-106. Zbl0546.42017
  23. [P] I. I. Pjatecki-Shapiro, Geometry and classification of homogeneous bounded domains in C n , Uspekhi Mat. Nauk 2 (1965), 3-51; Russian Math. Surv. 20 (1966), 1-48. 
  24. [R] F. Ricci, Singular integrals on R n , Tempus lectures held at the Institute of Mathematics of Wrocław University, 1991. 
  25. [Sj] P. Sjögren, Admissible convergence of Poisson integrals in symmetric spaces, Ann. of Math. (2) 124 (1986), 313-335. Zbl0646.31008
  26. [S] J. Sołowiej, The Fatou theorem for NA groups - a negative result, Colloq. Math. 67 (1994), 131-145. Zbl0839.22009
  27. [St] E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: Maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83. 
  28. [V] E. B. Vinberg, The theory of convex homogeneous cones, English translation, Trans. Moscow Math. Soc. 12 (1963), 340-403. Zbl0138.43301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.