The convergence of the finite element method for boundary value problems of the system of elliptic equations

Alexander Ženíšek

Aplikace matematiky (1969)

  • Volume: 14, Issue: 5, page 355-377
  • ISSN: 0862-7940


The finite element method is a generalized Ritz method using special admissible functions. In the paper, triangular elements and functions are considered which are linear or quadratic polynomials on each triangle. The convergence is proved for variational problems arising from second order boundary value problems. The order of accuracy of the procedure is ( s + 1 ) / 2 in case of inhomogeneous Dirichlet conditions and s in other cases ( s is the degree of the polynomial used).

How to cite


Ženíšek, Alexander. "Konvergence metody konečných prvku pro okrajově problémy systému eliptických rovnic." Aplikace matematiky 14.5 (1969): 355-377. <>.

author = {Ženíšek, Alexander},
journal = {Aplikace matematiky},
keywords = {numerical analysis},
language = {cze},
number = {5},
pages = {355-377},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Konvergence metody konečných prvku pro okrajově problémy systému eliptických rovnic},
url = {},
volume = {14},
year = {1969},

AU - Ženíšek, Alexander
TI - Konvergence metody konečných prvku pro okrajově problémy systému eliptických rovnic
JO - Aplikace matematiky
PY - 1969
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 14
IS - 5
SP - 355
EP - 377
LA - cze
KW - numerical analysis
UR -
ER -


  1. R. Courant, 10.1090/S0002-9904-1943-07818-4, Bull. Amer. Math. Soc., 49 (1943), 1-23. (1943) Zbl0063.00985MR0007838DOI10.1090/S0002-9904-1943-07818-4
  2. K. O. Friedrichs, H. B. Keller, A Finite Difference Scheme for Generalized Neumann Problems;, vydáno v knize J. H. Bramble, Numerical Solution of Partial Differential Equations, Academic Press, New York and London, 1966. (1966) Zbl0147.13901MR0203956
  3. Л. А. Оганесян, Сходимост вариационно-разностных схем при улучшеной аппроксимации граници, ДАН СССР 170 (1966), 41 - 44. (1966) Zbl1155.78304MR0205489
  4. M. J. Turner R. W. Clough H. С. Martin, L. J. Торр, 10.2514/8.3664, J. Aero. Sci. 23 (1956), 805 - 823. (1956) Zbl0072.41003DOI10.2514/8.3664
  5. O. C. Zienkiewicz, Y. K. Cheung, The Finite Element Method in Structural and Continuum Mechanics, Mc Graw-Hill, London 1967. (1967) Zbl0189.24902
  6. Pin Tong, T. H. H. Pian, 10.1016/0020-7683(67)90059-5, Int. J. of Solids and Structures, 3 (1967), No 5, 865-879. (1967) Zbl0149.42802DOI10.1016/0020-7683(67)90059-5
  7. M. Zlámal, 10.1007/BF02161362, Numer. Math. 12 (1968), 394-409. (1968) MR0243753DOI10.1007/BF02161362
  8. С. Г. Михлин, Проблема минимума квадратичного функционала, Москва 1952. (1952) Zbl1145.11324
  9. С. Г. Михлин, Вариационные методы в математической фузике, Москва 1957. (1957) Zbl0995.90594
  10. J. L. Synge, The Hypercircle in Mathematical Physics, Cambridge University Press, 1957. (1957) Zbl0079.13802MR0097605
  11. С. Г. Михлин X. Л. Смолицкий, Приближенные методы решения дифференциальных и интегральных уравнений, Москва 1965. (1965) Zbl1225.00032
  12. J. Kratochvíl a F. Leitner, Metoda konečných prvků a její aplikace v rovinných úlohách pružnosti, Stavebnícky časopis 16 (1968), 2, 65 - 82; 4, 201 - 217. (1968) 
  13. A. Ženíšek, Konvergence posloupnosti přibližných řešení při metodě konečných prvků s trojúhelníkovým tvarem, Stavebnícky časopis 16 (1968), 577-591. (1968) 
  14. A. Ženíšek, Interpolační polynomy na trojúhelníku a čtyřstěnu a metoda konečných prvků, (zasláno do Aplikací matematiky). 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.