On Synge-type angle condition for d -simplices

Antti Hannukainen; Sergey Korotov; Michal Křížek

Applications of Mathematics (2017)

  • Volume: 62, Issue: 1, page 1-13
  • ISSN: 0862-7940

Abstract

top
The maximum angle condition of J. L. Synge was originally introduced in interpolation theory and further used in finite element analysis and applications for triangular and later also for tetrahedral finite element meshes. In this paper we present some of its generalizations to higher-dimensional simplicial elements. In particular, we prove optimal interpolation properties of linear simplicial elements in d that degenerate in some way.

How to cite

top

Hannukainen, Antti, Korotov, Sergey, and Křížek, Michal. "On Synge-type angle condition for $d$-simplices." Applications of Mathematics 62.1 (2017): 1-13. <http://eudml.org/doc/287566>.

@article{Hannukainen2017,
abstract = {The maximum angle condition of J. L. Synge was originally introduced in interpolation theory and further used in finite element analysis and applications for triangular and later also for tetrahedral finite element meshes. In this paper we present some of its generalizations to higher-dimensional simplicial elements. In particular, we prove optimal interpolation properties of linear simplicial elements in $\{\mathbb \{R\}\}^d$ that degenerate in some way.},
author = {Hannukainen, Antti, Korotov, Sergey, Křížek, Michal},
journal = {Applications of Mathematics},
keywords = {simplicial element; maximum angle condition; interpolation error; higher-dimensional problem; $d$-dimensional sine; semiregular family of simplicial partitions; Poisson equation; numerical examples; maximum angle condition; finite element; optimal convergence rate; elliptic problems},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Synge-type angle condition for $d$-simplices},
url = {http://eudml.org/doc/287566},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Hannukainen, Antti
AU - Korotov, Sergey
AU - Křížek, Michal
TI - On Synge-type angle condition for $d$-simplices
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 1
EP - 13
AB - The maximum angle condition of J. L. Synge was originally introduced in interpolation theory and further used in finite element analysis and applications for triangular and later also for tetrahedral finite element meshes. In this paper we present some of its generalizations to higher-dimensional simplicial elements. In particular, we prove optimal interpolation properties of linear simplicial elements in ${\mathbb {R}}^d$ that degenerate in some way.
LA - eng
KW - simplicial element; maximum angle condition; interpolation error; higher-dimensional problem; $d$-dimensional sine; semiregular family of simplicial partitions; Poisson equation; numerical examples; maximum angle condition; finite element; optimal convergence rate; elliptic problems
UR - http://eudml.org/doc/287566
ER -

References

top
  1. Apel, T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics, Teubner, Stuttgart (1999). (1999) Zbl0934.65121MR1716824
  2. Apel, T., Dobrowolski, M., 10.1007/BF02320197, Computing 47 (1992), 277-293. (1992) Zbl0746.65077MR1155498DOI10.1007/BF02320197
  3. Babuška, I., Aziz, A. K., 10.1137/0713021, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/0713021
  4. Barnhill, R. E., Gregory, J. A., 10.1007/BF01399411, Numer. Math. 25 (1975), 215-229. (1975) Zbl0304.65076MR0458000DOI10.1007/BF01399411
  5. Bartoš, P., The sine theorem for simplexes in E n , Cas. Mat. 93 (1968), 273-277 (In Czech). (1968) Zbl0162.52302MR0248604
  6. Brandts, J., Korotov, S., Křížek, M., 10.1016/j.camwa.2007.11.010, Comput. Math. Appl. 55 (2008), 2227-2233. (2008) Zbl1142.65443MR2413688DOI10.1016/j.camwa.2007.11.010
  7. Brandts, J., Korotov, S., Křížek, M., 10.1016/j.aml.2009.01.031, Appl. Math. Lett. 22 (2009), 1210-1212. (2009) Zbl1173.52301MR2532540DOI10.1016/j.aml.2009.01.031
  8. Brandts, J., Korotov, S., Křížek, M., 10.1007/s10492-011-0024-1, Appl. Math., Praha 56 (2011), 417-424. (2011) Zbl1240.65327MR2833170DOI10.1007/s10492-011-0024-1
  9. Cheng, S.-W., Dey, T. K., Edelsbrunner, H., Facello, M. A., Teng, S.-H., 10.1145/304893.304894, Proc. of the Fifteenth Annual Symposium on Computational Geometry, Miami Beach, 1999 ACM, New York (1999), 1-13. (1999) MR1802189DOI10.1145/304893.304894
  10. Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
  11. Edelsbrunner, H., 10.1017/s0962492900001331, Acta Numerica (2000), 133-213. (2000) Zbl1004.65024MR1883628DOI10.1017/s0962492900001331
  12. Eriksson, F., 10.1007/BF00181352, Geom. Dedicata 7 (1978), 71-80. (1978) Zbl0375.50008MR0474009DOI10.1007/BF00181352
  13. Hannukainen, A., Korotov, S., Křížek, M., 10.1007/s00211-011-0403-2, Numer. Math. 120 (2012), 79-88. (2012) Zbl1255.65196MR2885598DOI10.1007/s00211-011-0403-2
  14. Jamet, P., Estimations d'erreur pour des éléments finis droits presque dégénérées, Rev. Franc. Automat. Inform. Rech. Operat. , Analyse numer., R-1 (1976), 43-60. (1976) Zbl0346.65052MR0455282
  15. Kobayashi, K., Tsuchiya, T., 10.1007/s10492-015-0108-4, Appl. Math., Praha 60 (2015), 485-499. (2015) Zbl06486922MR3396477DOI10.1007/s10492-015-0108-4
  16. Kobayashi, K., Tsuchiya, T., 10.1007/s13160-014-0161-5, Japan J. Ind. Appl. Math. 32 (2015), 65-76. (2015) Zbl1328.65052MR3318902DOI10.1007/s13160-014-0161-5
  17. Kobayashi, K., Tsuchiya, T., 10.1007/s10492-016-0125-y, Appl. Math., Praha 61 (2016), 121-133. (2016) Zbl06562150MR3470770DOI10.1007/s10492-016-0125-y
  18. Křížek, M., On semiregular families of triangulations and linear interpolation, Appl. Math., Praha 36 (1991), 223-232. (1991) Zbl0728.41003MR1109126
  19. Křížek, M., 10.1137/0729031, SIAM J. Numer. Anal. 29 (1992), 513-520. (1992) Zbl0755.41003MR1154279DOI10.1137/0729031
  20. Kučera, V., A note on necessary and sufficient conditions for convergence of the finite element method, Proc. Conf. Appl. Math. 2015 (J. Brandts et al., eds.) Institute of Mathematics CAS, Prague (2015), 132-139. (2015) Zbl1363.65189MR3700195
  21. Kučera, V., On necessary and sufficient conditions for finite element convergence, Available at arXiv:1601.02942 (2016). (2016) MR3700195
  22. Kučera, V., 10.1007/s10492-016-0132-z, Appl. Math., Praha 61 (2016), 287-298. (2016) Zbl06587853MR3502112DOI10.1007/s10492-016-0132-z
  23. Mao, S., Shi, Z., 10.1016/j.cam.2008.11.008, J. Comput. Appl. Math. 230 (2009), 329-331. (2009) Zbl1168.65063MR2532314DOI10.1016/j.cam.2008.11.008
  24. Oswald, P., 10.1007/s10492-015-0107-5, Appl. Math., Praha 60 (2015), 473-484. (2015) Zbl06486921MR3396476DOI10.1007/s10492-015-0107-5
  25. Rektorys, K., 10.1007/978-94-015-8308-4, Mathematics and Its Applications 280, Kluwer Academic Publishers, Dordrecht (1994). (1994) Zbl0805.00002MR1282494DOI10.1007/978-94-015-8308-4
  26. Strang, G., Fix, G. J., An Analysis of the Finite Element Method, Prentice-Hall Series in Automatic Computation, Englewood Cliffs, New Jersey (1973). (1973) MR0443377
  27. Synge, J. L., The Hypercircle in Mathematical Physics. A Method for the Approximate Solution of Boundary Value Problems, Cambridge University Press, Cambridge (1957). (1957) Zbl0079.13802MR0097605
  28. Ženíšek, A., The convergence of the finite element method for boundary value problems of the system of elliptic equations, Apl. Mat. 14 (1969), 355-377 (In Czech). (1969) Zbl0188.22604MR245978
  29. Zlámal, M., 10.1007/BF02161362, Numer. Math. 12 (1968), 394-409. (1968) Zbl0176.16001MR0243753DOI10.1007/BF02161362

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.