On Synge-type angle condition for -simplices
Antti Hannukainen; Sergey Korotov; Michal Křížek
Applications of Mathematics (2017)
- Volume: 62, Issue: 1, page 1-13
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHannukainen, Antti, Korotov, Sergey, and Křížek, Michal. "On Synge-type angle condition for $d$-simplices." Applications of Mathematics 62.1 (2017): 1-13. <http://eudml.org/doc/287566>.
@article{Hannukainen2017,
abstract = {The maximum angle condition of J. L. Synge was originally introduced in interpolation theory and further used in finite element analysis and applications for triangular and later also for tetrahedral finite element meshes. In this paper we present some of its generalizations to higher-dimensional simplicial elements. In particular, we prove optimal interpolation properties of linear simplicial elements in $\{\mathbb \{R\}\}^d$ that degenerate in some way.},
author = {Hannukainen, Antti, Korotov, Sergey, Křížek, Michal},
journal = {Applications of Mathematics},
keywords = {simplicial element; maximum angle condition; interpolation error; higher-dimensional problem; $d$-dimensional sine; semiregular family of simplicial partitions; Poisson equation; numerical examples; maximum angle condition; finite element; optimal convergence rate; elliptic problems},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Synge-type angle condition for $d$-simplices},
url = {http://eudml.org/doc/287566},
volume = {62},
year = {2017},
}
TY - JOUR
AU - Hannukainen, Antti
AU - Korotov, Sergey
AU - Křížek, Michal
TI - On Synge-type angle condition for $d$-simplices
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 1
EP - 13
AB - The maximum angle condition of J. L. Synge was originally introduced in interpolation theory and further used in finite element analysis and applications for triangular and later also for tetrahedral finite element meshes. In this paper we present some of its generalizations to higher-dimensional simplicial elements. In particular, we prove optimal interpolation properties of linear simplicial elements in ${\mathbb {R}}^d$ that degenerate in some way.
LA - eng
KW - simplicial element; maximum angle condition; interpolation error; higher-dimensional problem; $d$-dimensional sine; semiregular family of simplicial partitions; Poisson equation; numerical examples; maximum angle condition; finite element; optimal convergence rate; elliptic problems
UR - http://eudml.org/doc/287566
ER -
References
top- Apel, T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics, Teubner, Stuttgart (1999). (1999) Zbl0934.65121MR1716824
- Apel, T., Dobrowolski, M., 10.1007/BF02320197, Computing 47 (1992), 277-293. (1992) Zbl0746.65077MR1155498DOI10.1007/BF02320197
- Babuška, I., Aziz, A. K., 10.1137/0713021, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/0713021
- Barnhill, R. E., Gregory, J. A., 10.1007/BF01399411, Numer. Math. 25 (1975), 215-229. (1975) Zbl0304.65076MR0458000DOI10.1007/BF01399411
- Bartoš, P., The sine theorem for simplexes in , Cas. Mat. 93 (1968), 273-277 (In Czech). (1968) Zbl0162.52302MR0248604
- Brandts, J., Korotov, S., Křížek, M., 10.1016/j.camwa.2007.11.010, Comput. Math. Appl. 55 (2008), 2227-2233. (2008) Zbl1142.65443MR2413688DOI10.1016/j.camwa.2007.11.010
- Brandts, J., Korotov, S., Křížek, M., 10.1016/j.aml.2009.01.031, Appl. Math. Lett. 22 (2009), 1210-1212. (2009) Zbl1173.52301MR2532540DOI10.1016/j.aml.2009.01.031
- Brandts, J., Korotov, S., Křížek, M., 10.1007/s10492-011-0024-1, Appl. Math., Praha 56 (2011), 417-424. (2011) Zbl1240.65327MR2833170DOI10.1007/s10492-011-0024-1
- Cheng, S.-W., Dey, T. K., Edelsbrunner, H., Facello, M. A., Teng, S.-H., 10.1145/304893.304894, Proc. of the Fifteenth Annual Symposium on Computational Geometry, Miami Beach, 1999 ACM, New York (1999), 1-13. (1999) MR1802189DOI10.1145/304893.304894
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
- Edelsbrunner, H., 10.1017/s0962492900001331, Acta Numerica (2000), 133-213. (2000) Zbl1004.65024MR1883628DOI10.1017/s0962492900001331
- Eriksson, F., 10.1007/BF00181352, Geom. Dedicata 7 (1978), 71-80. (1978) Zbl0375.50008MR0474009DOI10.1007/BF00181352
- Hannukainen, A., Korotov, S., Křížek, M., 10.1007/s00211-011-0403-2, Numer. Math. 120 (2012), 79-88. (2012) Zbl1255.65196MR2885598DOI10.1007/s00211-011-0403-2
- Jamet, P., Estimations d'erreur pour des éléments finis droits presque dégénérées, Rev. Franc. Automat. Inform. Rech. Operat. , Analyse numer., R-1 (1976), 43-60. (1976) Zbl0346.65052MR0455282
- Kobayashi, K., Tsuchiya, T., 10.1007/s10492-015-0108-4, Appl. Math., Praha 60 (2015), 485-499. (2015) Zbl06486922MR3396477DOI10.1007/s10492-015-0108-4
- Kobayashi, K., Tsuchiya, T., 10.1007/s13160-014-0161-5, Japan J. Ind. Appl. Math. 32 (2015), 65-76. (2015) Zbl1328.65052MR3318902DOI10.1007/s13160-014-0161-5
- Kobayashi, K., Tsuchiya, T., 10.1007/s10492-016-0125-y, Appl. Math., Praha 61 (2016), 121-133. (2016) Zbl06562150MR3470770DOI10.1007/s10492-016-0125-y
- Křížek, M., On semiregular families of triangulations and linear interpolation, Appl. Math., Praha 36 (1991), 223-232. (1991) Zbl0728.41003MR1109126
- Křížek, M., 10.1137/0729031, SIAM J. Numer. Anal. 29 (1992), 513-520. (1992) Zbl0755.41003MR1154279DOI10.1137/0729031
- Kučera, V., A note on necessary and sufficient conditions for convergence of the finite element method, Proc. Conf. Appl. Math. 2015 (J. Brandts et al., eds.) Institute of Mathematics CAS, Prague (2015), 132-139. (2015) Zbl1363.65189MR3700195
- Kučera, V., On necessary and sufficient conditions for finite element convergence, Available at arXiv:1601.02942 (2016). (2016) MR3700195
- Kučera, V., 10.1007/s10492-016-0132-z, Appl. Math., Praha 61 (2016), 287-298. (2016) Zbl06587853MR3502112DOI10.1007/s10492-016-0132-z
- Mao, S., Shi, Z., 10.1016/j.cam.2008.11.008, J. Comput. Appl. Math. 230 (2009), 329-331. (2009) Zbl1168.65063MR2532314DOI10.1016/j.cam.2008.11.008
- Oswald, P., 10.1007/s10492-015-0107-5, Appl. Math., Praha 60 (2015), 473-484. (2015) Zbl06486921MR3396476DOI10.1007/s10492-015-0107-5
- Rektorys, K., 10.1007/978-94-015-8308-4, Mathematics and Its Applications 280, Kluwer Academic Publishers, Dordrecht (1994). (1994) Zbl0805.00002MR1282494DOI10.1007/978-94-015-8308-4
- Strang, G., Fix, G. J., An Analysis of the Finite Element Method, Prentice-Hall Series in Automatic Computation, Englewood Cliffs, New Jersey (1973). (1973) MR0443377
- Synge, J. L., The Hypercircle in Mathematical Physics. A Method for the Approximate Solution of Boundary Value Problems, Cambridge University Press, Cambridge (1957). (1957) Zbl0079.13802MR0097605
- Ženíšek, A., The convergence of the finite element method for boundary value problems of the system of elliptic equations, Apl. Mat. 14 (1969), 355-377 (In Czech). (1969) Zbl0188.22604MR245978
- Zlámal, M., 10.1007/BF02161362, Numer. Math. 12 (1968), 394-409. (1968) Zbl0176.16001MR0243753DOI10.1007/BF02161362
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.