A priori error estimates for Lagrange interpolation on triangles
Kenta Kobayashi; Takuya Tsuchiya
Applications of Mathematics (2015)
- Volume: 60, Issue: 5, page 485-499
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKobayashi, Kenta, and Tsuchiya, Takuya. "A priori error estimates for Lagrange interpolation on triangles." Applications of Mathematics 60.5 (2015): 485-499. <http://eudml.org/doc/271569>.
@article{Kobayashi2015,
abstract = {We present the error analysis of Lagrange interpolation on triangles. A new a priori error estimate is derived in which the bound is expressed in terms of the diameter and circumradius of a triangle. No geometric conditions on triangles are imposed in order to get this type of error estimates. To derive the new error estimate, we make use of the two key observations. The first is that squeezing a right isosceles triangle perpendicularly does not reduce the approximation property of Lagrange interpolation. An arbitrary triangle is obtained from a squeezed right triangle by a linear transformation. The second key observation is that the ratio of the singular values of the linear transformation is bounded by the circumradius of the target triangle.},
author = {Kobayashi, Kenta, Tsuchiya, Takuya},
journal = {Applications of Mathematics},
keywords = {finite element method; Lagrange interpolation; circumradius condition; minimum angle condition; maximum angle condition; finite element method; Lagrange interpolation; circumradius condition; minimum angle condition; maximum angle condition},
language = {eng},
number = {5},
pages = {485-499},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A priori error estimates for Lagrange interpolation on triangles},
url = {http://eudml.org/doc/271569},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Kobayashi, Kenta
AU - Tsuchiya, Takuya
TI - A priori error estimates for Lagrange interpolation on triangles
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 5
SP - 485
EP - 499
AB - We present the error analysis of Lagrange interpolation on triangles. A new a priori error estimate is derived in which the bound is expressed in terms of the diameter and circumradius of a triangle. No geometric conditions on triangles are imposed in order to get this type of error estimates. To derive the new error estimate, we make use of the two key observations. The first is that squeezing a right isosceles triangle perpendicularly does not reduce the approximation property of Lagrange interpolation. An arbitrary triangle is obtained from a squeezed right triangle by a linear transformation. The second key observation is that the ratio of the singular values of the linear transformation is bounded by the circumradius of the target triangle.
LA - eng
KW - finite element method; Lagrange interpolation; circumradius condition; minimum angle condition; maximum angle condition; finite element method; Lagrange interpolation; circumradius condition; minimum angle condition; maximum angle condition
UR - http://eudml.org/doc/271569
ER -
References
top- Adams, R. A., Fournier, J. J. F., Sobolev Spaces, Pure and Applied Mathematics 140 Academic Press, New York (2003). (2003) Zbl1098.46001MR2424078
- Babuška, I., Aziz, A. K., 10.1137/0713021, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/0713021
- Brandts, J., Korotov, S., Kříek, M., 10.1016/j.camwa.2007.11.010, Comput. Math. Appl. 55 (2008), 2227-2233. (2008) MR2413688DOI10.1016/j.camwa.2007.11.010
- Brenner, S. C., Scott, L. R., 10.1007/978-0-387-75934-0_7, Texts in Applied Mathematics 15 Springer, New York (2008). (2008) Zbl1135.65042MR2373954DOI10.1007/978-0-387-75934-0_7
- Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext Springer, New York (2011). (2011) Zbl1220.46002MR2759829
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics 40 SIAM, Philadelphia (2002), Repr., unabridged republ. of the orig. 1978. (2002) MR1930132
- Ern, A., Guermond, J.-L., 10.1007/978-1-4757-4355-5, Applied Mathematical Sciences 159 Springer, New York (2004). (2004) Zbl1059.65103MR2050138DOI10.1007/978-1-4757-4355-5
- Hannukainen, A., Korotov, S., Kříek, M., 10.1007/s00211-011-0403-2, Numer. Math. 120 (2012), 79-88. (2012) MR2885598DOI10.1007/s00211-011-0403-2
- Horn, R. A., Johnson, C. R., Topics in Matrix Analysis, Cambridge University Press, Cambridge (1991). (1991) Zbl0729.15001MR1091716
- Jamet, P., Estimations d'erreur pour des éléments finis droits presque dégénérés, Rev. Franc. Automat. Inform. Rech. Operat., R 10 French (1976), 43-60. (1976) MR0455282
- Kobayashi, K., Tsuchiya, T., 10.1007/s13160-013-0128-y, Japan J. Ind. Appl. Math. 31 (2014), 193-210. (2014) Zbl1295.65011MR3167084DOI10.1007/s13160-013-0128-y
- Kobayashi, K., Tsuchiya, T., 10.1007/s13160-014-0161-5, Japan J. Ind. Appl. Math. 32 (2015), 65-76. (2015) MR3318902DOI10.1007/s13160-014-0161-5
- Kobayashi, K., Tsuchiya, T., An extension of Babuška-Aziz's theorem to higher order Lagrange interpolation, ArXiv:1508.00119 (2015).
- Kříek, M., On semiregular families of triangulations and linear interpolation, Appl. Math., Praha 36 (1991), 223-232. (1991) MR1109126
- Liu, X., Kikuchi, F., Analysis and estimation of error constants for and interpolations over triangular finite elements, J. Math. Sci., Tokyo 17 (2010), 27-78. (2010) Zbl1248.65118MR2676659
- Shenk, N. A., 10.1090/S0025-5718-1994-1226816-5, Math. Comput. 63 (1994), 105-119. (1994) Zbl0807.65003MR1226816DOI10.1090/S0025-5718-1994-1226816-5
- Yamamoto, T., Elements of Matrix Analysis, Japanese Saiensu-sha (2010). (2010)
- Ženíšek, A., The convergence of the finite element method for boundary value problems of the system of elliptic equations, Apl. Mat. 14 Czech (1969), 355-376. (1969) Zbl0188.22604MR0245978
- Zlámal, M., 10.1007/BF02161362, Numer. Math. 12 (1968), 394-409. (1968) MR0243753DOI10.1007/BF02161362
Citations in EuDML Documents
top- Kenta Kobayashi, Takuya Tsuchiya, Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation
- Václav Kučera, Several notes on the circumradius condition
- Antti Hannukainen, Sergey Korotov, Michal Křížek, On Synge-type angle condition for -simplices
- Ali Khademi, Sergey Korotov, Jon Eivind Vatne, On interpolation error on degenerating prismatic elements
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.