Mathematical study of rotational incompressible non-viscous flows through multiply connected domains
Aplikace matematiky (1981)
- Volume: 26, Issue: 5, page 345-364
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFeistauer, Miloslav. "Mathematical study of rotational incompressible non-viscous flows through multiply connected domains." Aplikace matematiky 26.5 (1981): 345-364. <http://eudml.org/doc/15206>.
@article{Feistauer1981,
abstract = {The paper is devoted to the study of the boundary value problem for an elliptic quasilinear second-order partial differential equation in a multiply connected, bounded plane domain under the assumption that the Dirichlet boundary value conditions on the separate components of the boundary are given up to additive constants. These constants together with the solution of the equation considered are to be determined so as to fulfil the so called trainling conditions. The results have immediate applications in the investigation of the rotational flow round groups of profiles or cascades of profiles.},
author = {Feistauer, Miloslav},
journal = {Aplikace matematiky},
keywords = {multiply connected; bounded plane domain; Dirichlet boundary value conditions; trailing conditions; groups of profiles or cascades of profiles; multiply connected, bounded plane domain; Dirichlet boundary value conditions; trailing conditions; groups of profiles or cascades of profiles},
language = {eng},
number = {5},
pages = {345-364},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mathematical study of rotational incompressible non-viscous flows through multiply connected domains},
url = {http://eudml.org/doc/15206},
volume = {26},
year = {1981},
}
TY - JOUR
AU - Feistauer, Miloslav
TI - Mathematical study of rotational incompressible non-viscous flows through multiply connected domains
JO - Aplikace matematiky
PY - 1981
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 26
IS - 5
SP - 345
EP - 364
AB - The paper is devoted to the study of the boundary value problem for an elliptic quasilinear second-order partial differential equation in a multiply connected, bounded plane domain under the assumption that the Dirichlet boundary value conditions on the separate components of the boundary are given up to additive constants. These constants together with the solution of the equation considered are to be determined so as to fulfil the so called trainling conditions. The results have immediate applications in the investigation of the rotational flow round groups of profiles or cascades of profiles.
LA - eng
KW - multiply connected; bounded plane domain; Dirichlet boundary value conditions; trailing conditions; groups of profiles or cascades of profiles; multiply connected, bounded plane domain; Dirichlet boundary value conditions; trailing conditions; groups of profiles or cascades of profiles
UR - http://eudml.org/doc/15206
ER -
References
top- Г. В. Алексеев, Об исчезающей вязкости в двумерных стационарных задачах гидродинамики несжимаемой жидкости, Динамика сплошной среды, Вып. 10, Новосибирск, 1972. (1972) Zbl1170.01322
- L. Bers F. John M. Schechter, Partial differential equations, Interscience publishers, New York-London -Sydney, 1964. (1964) MR0163043
- R. Courant, Partial differential equations, New York-London, 1962. (1962) Zbl0099.29504
- M. Feistauer, Some cases of numerical solution of differential equations describing the vortex-flow through three-dimensional axially-symmetric channels, Apl. mat. 16 (1971), 265-288. (1971) Zbl0221.65184MR0286370
- M. Feistauer J. Polášek, The calculation of axially-symmetric stream fields, Proceedings of the Hydro-Turbo Conference 74, Luhačovice 1974 (in Czech). (1974)
- M. Feistauer, On two-dimensional and three-dimensional axially symmetric rotational flows of an ideal incompressible fluid, Apl. mat. 22(1977), 199-214. (1977) Zbl0373.76022MR0436748
- M. Feistauer, Solution of elliptic problem with not fully specified Dirichlet boundary value conditions and its application in hydrodynamics, Apl. mat. 24 (1979), 67-74. (1979) Zbl0399.35032MR0512557
- Б. Г. Гуров, Существование и единственность установившихся непотенциальных течений идеальной жидкости в плоских каналах, Численные методы механики сплошной среды, Том 1, № 3, Новосибирск, 1970. (1970) Zbl1170.92319
- Б. Г. Гуров H. H. Яненко И. К. Яушев, Численный расчет непотенциальных течений идеальной жидкости в плоских каналах, Численные методы механики сплошной среды, Том 2, № 1, Новосибирск, 1971. (1971) Zbl1230.35094
- K. Jacob, Berechnung der inkompressiblen Potentialströmung für Einzel- und Gitterprofile nach einer Variante des Martensens-Verfahrens, Bericht 63 RO 2 der Aerodynamischen Versuchsanstalt Göttingen, 1963. (1963)
- О. А. Ладыженская H. H. Уралъцева, Линейные и квазилинейные уравнения эллиптического типа, Наука, Москва, 1973. (1973) Zbl1221.53041
- Л. А. Люстерник В. И. Соболев, Элементы функционального анализа, Наука, Москва, 1965. (1965) Zbl1225.00032
- E. Martensen, Berechnung der Druckverteilung an Gitterprofilen in ebener Potentialströmung mit einer Fredholmschen Integralgleichung, Arch. Rat. Mech. Anal. 3 (1959), 253-270. (1959) Zbl0204.25603MR0114431
- В. В. Рагулин, Об одной постановке задачи протекания идеальной жидкости, Сборник ,,Некоторые проблемы математики и механики", Динамика сплошной среды, вып. 33, Новосибирск, 1978. (1978) Zbl1130.91322
- J. Polášek Z. Vlášek, Berechnung der ebenen Potentialströmung von rotierenden radialen Profilgittern, Apl. mat. 17 (1972), 295-308. (1972) MR0312808
Citations in EuDML Documents
top- Miloslav Feistauer, Jiří Felcman, Zdeněk Vlášek, Finite element solution of flows through cascades of profiles in a layer of variable thickness
- Miloslav Feistauer, Nonlinear elliptic problems with incomplete Dirichlet conditions and the stream function solution of subsonic rotational flows past profiles or cascades of profiles
- Miloslav Feistauer, On irrotational flows through cascades of profiles in a layer of variable thickness
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.