On a superconvergent finite element scheme for elliptic systems. III. Optimal interior estimates
Aplikace matematiky (1987)
- Volume: 32, Issue: 4, page 276-289
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHlaváček, Ivan, and Křížek, Michal. "On a superconvergent finite element scheme for elliptic systems. III. Optimal interior estimates." Aplikace matematiky 32.4 (1987): 276-289. <http://eudml.org/doc/15500>.
@article{Hlaváček1987,
abstract = {Second order elliptic systems with boundary conditions of Dirichlet, Neumann’s or Newton’s type are solved by means of linear finite elements on regular uniform triangulations. Error estimates of the optimal order $O(h^2)$ are proved for the averaged gradient on any fixed interior subdomain, provided the problem under consideration is regular in a certain sense.},
author = {Hlaváček, Ivan, Křížek, Michal},
journal = {Aplikace matematiky},
keywords = {post-processing; averaged gradient; elliptic systems; second order elliptic systems; linear finite elements; regular uniform triangulations; error estimats; optimal order; superconvergence; post-processing; averaged gradient; elliptic systems; Second order elliptic systems; linear finite elements; regular uniform triangulations; Error estimats; optimal order},
language = {eng},
number = {4},
pages = {276-289},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a superconvergent finite element scheme for elliptic systems. III. Optimal interior estimates},
url = {http://eudml.org/doc/15500},
volume = {32},
year = {1987},
}
TY - JOUR
AU - Hlaváček, Ivan
AU - Křížek, Michal
TI - On a superconvergent finite element scheme for elliptic systems. III. Optimal interior estimates
JO - Aplikace matematiky
PY - 1987
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 4
SP - 276
EP - 289
AB - Second order elliptic systems with boundary conditions of Dirichlet, Neumann’s or Newton’s type are solved by means of linear finite elements on regular uniform triangulations. Error estimates of the optimal order $O(h^2)$ are proved for the averaged gradient on any fixed interior subdomain, provided the problem under consideration is regular in a certain sense.
LA - eng
KW - post-processing; averaged gradient; elliptic systems; second order elliptic systems; linear finite elements; regular uniform triangulations; error estimats; optimal order; superconvergence; post-processing; averaged gradient; elliptic systems; Second order elliptic systems; linear finite elements; regular uniform triangulations; Error estimats; optimal order
UR - http://eudml.org/doc/15500
ER -
References
top- J. H. Bramble J. A. Nitsche A. H. Schatz, Maximum-norm interior estimates for Ritz-Galerkin methods, Math. Соmр. 29 (1975), 677-688. (1975) MR0398120
- P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) Zbl0383.65058MR0520174
- G. Fichera, Existence theorems in elasticity, Encycl. of Physics, ed. S. Flügge, vol. VIa/2, Springer-Verlag, Berlin, 1972. (1972)
- G. Geymonat, 10.1007/BF02414374, Ann. Mat. Рurа Appl. 69 (1965), 207-284. (1965) MR0196262DOI10.1007/BF02414374
- P. Grisvard, Behaviour of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain;, in: Numerical solution of partial differential equations III, Academic Press, New York, 1976, 207-274. (1976) MR0466912
- P. Grisvard, Boundary value problems in nonsmooth domains, Univ. of Maryland, Dep. of Math., College Park, Lecture Notes 19, 1980. (1980)
- E. Hewitt K. Stromberg, Real and abstract analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1975. (1975) MR0367121
- I. Hlaváček M. Křížek, On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary conditions, Apl. Mat. 32 (1987), 131-154. (1987) MR0885758
- I. Hlaváček M. Křížek, On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type, Apl. Mat. 32 (1987), 200-213. (1987) MR0895878
- J. Kadlec, On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set, Czechoslovak Math. J. 14 (1964), 386-393. (1964) Zbl0166.37703MR0170088
- V. A. Kondratěv, Boundary problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209-292. (1967) MR0226187
- M. Moussaoui, Régularité de la solution d'un problème à derivée oblique, Comptes Rendus Acad. Sci. Paris, 279, sér. A, 25 (1974), 869-872. (1974) Zbl0293.35014MR0358062
- J. Nečas, Les méthodes directes en theorie des équations elliptiques, Masson, Paris, or Academia, Prague, 1967. (1967) MR0227584
- J. A. Nitsche A. H. Schatz, Interior estimate for Ritz-Galerkin methods, Math. Соmр. 28 (1974), 937-958. (1974) MR0373325
- B. Westergren, Interior estimates for elliptic systems of difference equations, (Thesis), Univ. of Göteborg, 1982. (1982)
- Q. D. Zhu, Natural inner superconvergence for the finite element method, Proc. China-France Sympos. on Finite Element Methods, Beijing, 1982, Gordon and Breach, Sci. Publ., Inc., New York, 1983, 935-960. (1982) MR0754041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.