Variational-hemivariational inequalities in nonlinear elasticity. The coercive case

Panagiotis D. Panagiotopoulos

Aplikace matematiky (1988)

  • Volume: 33, Issue: 4, page 249-268
  • ISSN: 0862-7940

Abstract

top
Existence of a solution of the problem of nonlinear elasticity with non-classical boundary conditions, when the relationship between the corresponding dual quantities is given in terms of a nonmonotone and generally multivalued relation. The mathematical formulation leads to a problem of non-smooth and nonconvex optimization, and in its weak form to hemivariational inequalities and to the determination of the so called substationary points of the given potential.

How to cite

top

Panagiotopoulos, Panagiotis D.. "Variational-hemivariational inequalities in nonlinear elasticity. The coercive case." Aplikace matematiky 33.4 (1988): 249-268. <http://eudml.org/doc/15541>.

@article{Panagiotopoulos1988,
abstract = {Existence of a solution of the problem of nonlinear elasticity with non-classical boundary conditions, when the relationship between the corresponding dual quantities is given in terms of a nonmonotone and generally multivalued relation. The mathematical formulation leads to a problem of non-smooth and nonconvex optimization, and in its weak form to hemivariational inequalities and to the determination of the so called substationary points of the given potential.},
author = {Panagiotopoulos, Panagiotis D.},
journal = {Aplikace matematiky},
keywords = {non-smooth optimization; nonconvex optimization; substationary points of potential; small strains; uniaxial contact problem; nonmonotone reaction-displacement diagram; frictional effects; nonmonotone shearing; multivalued functions; variational-hemivariational inequalities; nonlinear elasticity; non-smooth optimization; nonconvex optimization; substationary points of potential; small strains; uniaxial contact problem; nonmonotone reaction- displacement diagram; frictional effects; nonmonotone shearing; multivalued functions},
language = {eng},
number = {4},
pages = {249-268},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variational-hemivariational inequalities in nonlinear elasticity. The coercive case},
url = {http://eudml.org/doc/15541},
volume = {33},
year = {1988},
}

TY - JOUR
AU - Panagiotopoulos, Panagiotis D.
TI - Variational-hemivariational inequalities in nonlinear elasticity. The coercive case
JO - Aplikace matematiky
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 33
IS - 4
SP - 249
EP - 268
AB - Existence of a solution of the problem of nonlinear elasticity with non-classical boundary conditions, when the relationship between the corresponding dual quantities is given in terms of a nonmonotone and generally multivalued relation. The mathematical formulation leads to a problem of non-smooth and nonconvex optimization, and in its weak form to hemivariational inequalities and to the determination of the so called substationary points of the given potential.
LA - eng
KW - non-smooth optimization; nonconvex optimization; substationary points of potential; small strains; uniaxial contact problem; nonmonotone reaction-displacement diagram; frictional effects; nonmonotone shearing; multivalued functions; variational-hemivariational inequalities; nonlinear elasticity; non-smooth optimization; nonconvex optimization; substationary points of potential; small strains; uniaxial contact problem; nonmonotone reaction- displacement diagram; frictional effects; nonmonotone shearing; multivalued functions
UR - http://eudml.org/doc/15541
ER -

References

top
  1. J. J. Moreau, La notion de sur-potentiel et les liaisons unilatérales en élastostatique, C. R. Acad. Sc., Paris 267A (1968) 954-957. (1968) Zbl0172.49802MR0241038
  2. G. Duvaut, J. L. Lions, Les inéquations en Mécanique et en Physique, Dunod, Paris 1972. (1972) Zbl0298.73001MR0464857
  3. P. D. Panagiotopoulos, Inequality Problems in Mechanics. Convex and Nonconvex Energy Functions, Birkhäuser Verlag, Basel/Boston 1985. (1985) MR0896909
  4. G. Fichera, Boundary Value Problems in Elasticity with Unilateral Constraints, In: Encyclopedia of Physics (ed. by S. Flügge) Vol. VI a/2. Springer Verlag, Berlin 1972. (1972) 
  5. G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Mem. Accad. Naz. Lincei, VIII 7 (1964) 91 - 140. (1964) Zbl0146.21204MR0178631
  6. P. D. Panagiotopoulos, 10.1016/0093-6413(81)90064-1, Mech. Res. Comm. 8 (1981) 335-340. (1981) Zbl0497.73020MR0639382DOI10.1016/0093-6413(81)90064-1
  7. P. D. Panagiotopoulos, Nonconvex Energy Functions. Hemivariational Inequalities and Substationarity Principles, Acta Mechanica 48 (1983) 160-183. (1983) Zbl0538.73018MR0715806
  8. F. H. Clarke, Nonsmooth Analysis and Optimization, J. Wiley, N. York 1984. (1984) 
  9. R. T. Rockafellar, Generalized Directional Derivatives and Subgradients of Non-convex Functions, Can. J. Math. XXXII (1980) 257-280. (1980) MR0571922
  10. P. D. Panagiotopoulos, Une généralization non-convex de la notion du sur-potentiel et ses applications, CR. Acad. Sc., Paris 296B (1983) 1105-1108. (1983) MR0720434
  11. P. D. Panagiotopoulos, 10.1002/zamm.19850650608, ZAMM 65 (1985) 219-229. (1985) MR0801713DOI10.1002/zamm.19850650608
  12. P. D. Panagiotopoulos, Nonconvex Unilateral Contact Problems and Approximation, In: Proc. MAFELAP 1984 Conf. (J. Whiteman ed.) p. 547-553, Academic Press 1985. (1984) MR0811061
  13. P. D. Panagiotopoulos, 10.1002/zamm.19850650116, ZAMM 65 (1985) 29-36. (1985) Zbl0574.73015MR0841254DOI10.1002/zamm.19850650116
  14. P. D. Panagiotopoulos, Hemivariational Inequalities. Existence and Approximation Results, Proc. 2nd Meeting Unilateral Problems in Struct. Anal. (ed. G. delPiero, F. Maceri). CISM Publ. No. 288, Springer Verlag, Wien N. York, 1985 p. 223-246. (1985) Zbl0621.49003
  15. P. D. Panagiotopoulos, A. Avdelas, 10.1007/BF00537372, Ing. Archiv. 54 (1984) 401 - 412. (1984) Zbl0554.73094DOI10.1007/BF00537372
  16. P. D. Panagiotopoulos, C. C. Baniotopoulos, 10.1016/0264-682X(84)90006-6, Eng. Anal. 1 (1984) 20-31. (1984) DOI10.1016/0264-682X(84)90006-6
  17. H. Floegl, H. A. Mang, Tension Stiffening Concept Based on Bond Slip, ASCE, ST 12, 108 (1982), 2681-2701. (1982) 
  18. C. Baniotopoulos, Analysis of Structures with Complete Stress-Strain Laws, Doct. Thesis Aristotle University Thessaloniki, 1985. (1985) 
  19. K. C. Chang, 10.1016/0022-247X(81)90095-0, J. Math. Anal. Appl. 80 (1981) 102- 129. (1981) Zbl0487.49027MR0614246DOI10.1016/0022-247X(81)90095-0
  20. F. Lene, Sur les matériaux élastiques á énergie de déformation non quadratique, J. de Mécanique 13(1974) 499 - 534. (1974) Zbl0322.35036MR0375890
  21. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Akademia, Prague 1967. (1967) MR0227584
  22. I. Hlaváček J. Haslinger J. Nečas J. Lovíšek, Solution of variariational inequalities in mechanics, (Slovak). Alfa, Bratislava 1982. (1982) MR0755152
  23. J. Nečas, I. Hlaváček, Mathematical Theory of Elastic and Elastoplastic Bodies, Elsevier, Amsterdam 1981. (1981) 
  24. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéeaires, Dunod/Gauthier-Villars, Paris 1969. (1969) MR0259693
  25. I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam and American Elsevier, New York 1976. (1976) Zbl0322.90046MR0463994
  26. J. Rauch, 10.1090/S0002-9939-1977-0442453-6, Proc. A. M. S. 64 (1977) 277-282. (1977) MR0442453DOI10.1090/S0002-9939-1977-0442453-6
  27. M. C. Pelissier, Sur quelques problèmes non linéaires en glaciologie, Thèse Université Paris XI, 1975. (1975) MR0439015
  28. Z. Mróz, Mathematical Models of Inelastic Material Behaviour, Solid Mechanics Division, Univ. of Waterloo, 1973. (1973) 
  29. D. W. Haines, W. D. Wilson, 10.1016/0022-5096(79)90034-6, J. Mech. Phys. Solids 27 (1979) 345-360. (1979) Zbl0425.73031DOI10.1016/0022-5096(79)90034-6
  30. P. Suquet, Plasticité et hornogènéisation, Thèse d'Etat. Université Paris VI, 1982. (1982) 
  31. H. Matthies G. Strang, E. Christiansen, The Saddle Point of a Differential Program, In ''Energy Methods in Finite Element Analysis" ed. by R. Glowinski, E. Rodin, O. C. Zienkiewicz J. Wiley, N. York, 1979. (1979) MR0537013
  32. D. Ornstein, 10.1007/BF00253928, Arch. Rat. Mech. Anal. 11 (1962) 40-49. (1962) MR0149331DOI10.1007/BF00253928
  33. A. Kufner O. John, S. Fučík, Function Spaces, Noordhoff International Publ., Leyden and Academia, Prague, 1977. (1977) MR0482102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.