Variational-hemivariational inequalities in nonlinear elasticity. The coercive case
Aplikace matematiky (1988)
- Volume: 33, Issue: 4, page 249-268
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topPanagiotopoulos, Panagiotis D.. "Variational-hemivariational inequalities in nonlinear elasticity. The coercive case." Aplikace matematiky 33.4 (1988): 249-268. <http://eudml.org/doc/15541>.
@article{Panagiotopoulos1988,
abstract = {Existence of a solution of the problem of nonlinear elasticity with non-classical boundary conditions, when the relationship between the corresponding dual quantities is given in terms of a nonmonotone and generally multivalued relation. The mathematical formulation leads to a problem of non-smooth and nonconvex optimization, and in its weak form to hemivariational inequalities and to the determination of the so called substationary points of the given potential.},
author = {Panagiotopoulos, Panagiotis D.},
journal = {Aplikace matematiky},
keywords = {non-smooth optimization; nonconvex optimization; substationary points of potential; small strains; uniaxial contact problem; nonmonotone reaction-displacement diagram; frictional effects; nonmonotone shearing; multivalued functions; variational-hemivariational inequalities; nonlinear elasticity; non-smooth optimization; nonconvex optimization; substationary points of potential; small strains; uniaxial contact problem; nonmonotone reaction- displacement diagram; frictional effects; nonmonotone shearing; multivalued functions},
language = {eng},
number = {4},
pages = {249-268},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variational-hemivariational inequalities in nonlinear elasticity. The coercive case},
url = {http://eudml.org/doc/15541},
volume = {33},
year = {1988},
}
TY - JOUR
AU - Panagiotopoulos, Panagiotis D.
TI - Variational-hemivariational inequalities in nonlinear elasticity. The coercive case
JO - Aplikace matematiky
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 33
IS - 4
SP - 249
EP - 268
AB - Existence of a solution of the problem of nonlinear elasticity with non-classical boundary conditions, when the relationship between the corresponding dual quantities is given in terms of a nonmonotone and generally multivalued relation. The mathematical formulation leads to a problem of non-smooth and nonconvex optimization, and in its weak form to hemivariational inequalities and to the determination of the so called substationary points of the given potential.
LA - eng
KW - non-smooth optimization; nonconvex optimization; substationary points of potential; small strains; uniaxial contact problem; nonmonotone reaction-displacement diagram; frictional effects; nonmonotone shearing; multivalued functions; variational-hemivariational inequalities; nonlinear elasticity; non-smooth optimization; nonconvex optimization; substationary points of potential; small strains; uniaxial contact problem; nonmonotone reaction- displacement diagram; frictional effects; nonmonotone shearing; multivalued functions
UR - http://eudml.org/doc/15541
ER -
References
top- J. J. Moreau, La notion de sur-potentiel et les liaisons unilatérales en élastostatique, C. R. Acad. Sc., Paris 267A (1968) 954-957. (1968) Zbl0172.49802MR0241038
- G. Duvaut, J. L. Lions, Les inéquations en Mécanique et en Physique, Dunod, Paris 1972. (1972) Zbl0298.73001MR0464857
- P. D. Panagiotopoulos, Inequality Problems in Mechanics. Convex and Nonconvex Energy Functions, Birkhäuser Verlag, Basel/Boston 1985. (1985) MR0896909
- G. Fichera, Boundary Value Problems in Elasticity with Unilateral Constraints, In: Encyclopedia of Physics (ed. by S. Flügge) Vol. VI a/2. Springer Verlag, Berlin 1972. (1972)
- G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Mem. Accad. Naz. Lincei, VIII 7 (1964) 91 - 140. (1964) Zbl0146.21204MR0178631
- P. D. Panagiotopoulos, 10.1016/0093-6413(81)90064-1, Mech. Res. Comm. 8 (1981) 335-340. (1981) Zbl0497.73020MR0639382DOI10.1016/0093-6413(81)90064-1
- P. D. Panagiotopoulos, Nonconvex Energy Functions. Hemivariational Inequalities and Substationarity Principles, Acta Mechanica 48 (1983) 160-183. (1983) Zbl0538.73018MR0715806
- F. H. Clarke, Nonsmooth Analysis and Optimization, J. Wiley, N. York 1984. (1984)
- R. T. Rockafellar, Generalized Directional Derivatives and Subgradients of Non-convex Functions, Can. J. Math. XXXII (1980) 257-280. (1980) MR0571922
- P. D. Panagiotopoulos, Une généralization non-convex de la notion du sur-potentiel et ses applications, CR. Acad. Sc., Paris 296B (1983) 1105-1108. (1983) MR0720434
- P. D. Panagiotopoulos, 10.1002/zamm.19850650608, ZAMM 65 (1985) 219-229. (1985) MR0801713DOI10.1002/zamm.19850650608
- P. D. Panagiotopoulos, Nonconvex Unilateral Contact Problems and Approximation, In: Proc. MAFELAP 1984 Conf. (J. Whiteman ed.) p. 547-553, Academic Press 1985. (1984) MR0811061
- P. D. Panagiotopoulos, 10.1002/zamm.19850650116, ZAMM 65 (1985) 29-36. (1985) Zbl0574.73015MR0841254DOI10.1002/zamm.19850650116
- P. D. Panagiotopoulos, Hemivariational Inequalities. Existence and Approximation Results, Proc. 2nd Meeting Unilateral Problems in Struct. Anal. (ed. G. delPiero, F. Maceri). CISM Publ. No. 288, Springer Verlag, Wien N. York, 1985 p. 223-246. (1985) Zbl0621.49003
- P. D. Panagiotopoulos, A. Avdelas, 10.1007/BF00537372, Ing. Archiv. 54 (1984) 401 - 412. (1984) Zbl0554.73094DOI10.1007/BF00537372
- P. D. Panagiotopoulos, C. C. Baniotopoulos, 10.1016/0264-682X(84)90006-6, Eng. Anal. 1 (1984) 20-31. (1984) DOI10.1016/0264-682X(84)90006-6
- H. Floegl, H. A. Mang, Tension Stiffening Concept Based on Bond Slip, ASCE, ST 12, 108 (1982), 2681-2701. (1982)
- C. Baniotopoulos, Analysis of Structures with Complete Stress-Strain Laws, Doct. Thesis Aristotle University Thessaloniki, 1985. (1985)
- K. C. Chang, 10.1016/0022-247X(81)90095-0, J. Math. Anal. Appl. 80 (1981) 102- 129. (1981) Zbl0487.49027MR0614246DOI10.1016/0022-247X(81)90095-0
- F. Lene, Sur les matériaux élastiques á énergie de déformation non quadratique, J. de Mécanique 13(1974) 499 - 534. (1974) Zbl0322.35036MR0375890
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Akademia, Prague 1967. (1967) MR0227584
- I. Hlaváček J. Haslinger J. Nečas J. Lovíšek, Solution of variariational inequalities in mechanics, (Slovak). Alfa, Bratislava 1982. (1982) MR0755152
- J. Nečas, I. Hlaváček, Mathematical Theory of Elastic and Elastoplastic Bodies, Elsevier, Amsterdam 1981. (1981)
- J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéeaires, Dunod/Gauthier-Villars, Paris 1969. (1969) MR0259693
- I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam and American Elsevier, New York 1976. (1976) Zbl0322.90046MR0463994
- J. Rauch, 10.1090/S0002-9939-1977-0442453-6, Proc. A. M. S. 64 (1977) 277-282. (1977) MR0442453DOI10.1090/S0002-9939-1977-0442453-6
- M. C. Pelissier, Sur quelques problèmes non linéaires en glaciologie, Thèse Université Paris XI, 1975. (1975) MR0439015
- Z. Mróz, Mathematical Models of Inelastic Material Behaviour, Solid Mechanics Division, Univ. of Waterloo, 1973. (1973)
- D. W. Haines, W. D. Wilson, 10.1016/0022-5096(79)90034-6, J. Mech. Phys. Solids 27 (1979) 345-360. (1979) Zbl0425.73031DOI10.1016/0022-5096(79)90034-6
- P. Suquet, Plasticité et hornogènéisation, Thèse d'Etat. Université Paris VI, 1982. (1982)
- H. Matthies G. Strang, E. Christiansen, The Saddle Point of a Differential Program, In ''Energy Methods in Finite Element Analysis" ed. by R. Glowinski, E. Rodin, O. C. Zienkiewicz J. Wiley, N. York, 1979. (1979) MR0537013
- D. Ornstein, 10.1007/BF00253928, Arch. Rat. Mech. Anal. 11 (1962) 40-49. (1962) MR0149331DOI10.1007/BF00253928
- A. Kufner O. John, S. Fučík, Function Spaces, Noordhoff International Publ., Leyden and Academia, Prague, 1977. (1977) MR0482102
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.