Divergence of FEM: Babuška-Aziz triangulations revisited
Applications of Mathematics (2015)
- Volume: 60, Issue: 5, page 473-484
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topOswald, Peter. "Divergence of FEM: Babuška-Aziz triangulations revisited." Applications of Mathematics 60.5 (2015): 473-484. <http://eudml.org/doc/271633>.
@article{Oswald2015,
abstract = {By re-examining the arguments and counterexamples in I. Babuška, A. K. Aziz (1976) concerning the well-known maximum angle condition, we study the convergence behavior of the linear finite element method (FEM) on a family of distorted triangulations of the unit square originally introduced by H. Schwarz in 1880. For a Poisson problem with polynomial solution, we demonstrate arbitrarily slow convergence as well as failure of convergence if the distortion of the triangulations grows sufficiently fast. This seems to be the first formal proof of divergence of the FEM for a standard elliptic problem with smooth solution.},
author = {Oswald, Peter},
journal = {Applications of Mathematics},
keywords = {finite elements; error bounds; divergence; maximum angle condition; triangulation; finite elements; error bounds; divergence; maximum angle condition; triangulation},
language = {eng},
number = {5},
pages = {473-484},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Divergence of FEM: Babuška-Aziz triangulations revisited},
url = {http://eudml.org/doc/271633},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Oswald, Peter
TI - Divergence of FEM: Babuška-Aziz triangulations revisited
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 5
SP - 473
EP - 484
AB - By re-examining the arguments and counterexamples in I. Babuška, A. K. Aziz (1976) concerning the well-known maximum angle condition, we study the convergence behavior of the linear finite element method (FEM) on a family of distorted triangulations of the unit square originally introduced by H. Schwarz in 1880. For a Poisson problem with polynomial solution, we demonstrate arbitrarily slow convergence as well as failure of convergence if the distortion of the triangulations grows sufficiently fast. This seems to be the first formal proof of divergence of the FEM for a standard elliptic problem with smooth solution.
LA - eng
KW - finite elements; error bounds; divergence; maximum angle condition; triangulation; finite elements; error bounds; divergence; maximum angle condition; triangulation
UR - http://eudml.org/doc/271633
ER -
References
top- Apel, T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics Teubner, Leipzig; Technische Univ., Chemnitz (1999). (1999) Zbl0934.65121MR1716824
- Babuška, I., Aziz, A. K., 10.1137/0713021, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/0713021
- Bank, R. E., Yserentant, H., 10.1007/s00211-014-0687-0, Numer. Math. (2014), doi:10.1007/s00211-014-0687-0. (2014) MR3383332DOI10.1007/s00211-014-0687-0
- Hannukainen, A., Juntunen, M., Huhtala, A., Finite Element Methods I, course notes A.Mat-1.3650, Univ. Helsinki, 2015, .
- Hannukainen, A., Korotov, S., Křížek, M., 10.1007/s00211-011-0403-2, Numer. Math. 120 (2012), 79-88. (2012) Zbl1255.65196MR2885598DOI10.1007/s00211-011-0403-2
- Jamet, P., Estimations d'erreur pour des éléments finis droits presque dégénérés, Rev. Franc. Automat. Inform. Rech. Operat. , Analyse numer., R-1 (1976), 43-60. (1976) MR0455282
- Kobayashi, K., Tsuchiya, T., 10.1007/s13160-013-0128-y, Japan J. Ind. Appl. Math. 31 (2014), 193-210. (2014) Zbl1295.65011MR3167084DOI10.1007/s13160-013-0128-y
- Křížek, M., On semiregular families of triangulations and linear interpolation, Appl. Math., Praha 36 (1991), 223-232. (1991) Zbl0728.41003MR1109126
- Ludwig, L., A discussion on the maximum angle condition/counterexample for the convergence of the FEM, Manuscript, TU Dresden, 2011.
- Schwarz, H. A., Sur une définition erroneé de l'aire d'une surface courbe, Gesammelte Mathematische Abhandlungen, vol. 2 Springer, Berlin (1890), 309-311, 369-370. (1890)
Citations in EuDML Documents
top- Peter Oswald, Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error
- Antti Hannukainen, Sergey Korotov, Michal Křížek, On Synge-type angle condition for -simplices
- Ali Khademi, Sergey Korotov, Jon Eivind Vatne, On interpolation error on degenerating prismatic elements
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.