Global in time solutions to quasilinear telegraph equations involving operators with time delay
Applications of Mathematics (1991)
- Volume: 36, Issue: 6, page 456-468
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFeireisl, Eduard. "Global in time solutions to quasilinear telegraph equations involving operators with time delay." Applications of Mathematics 36.6 (1991): 456-468. <http://eudml.org/doc/15693>.
@article{Feireisl1991,
abstract = {The existence of small global (in time) solutions to an abstract evolution equation containing a damping term is proved. The result is then applied to fully nonlinear telegraph equations and to nonlinear equations involving operators with time delay.},
author = {Feireisl, Eduard},
journal = {Applications of Mathematics},
keywords = {quasilinear telegraph equations; bounded solutions; time-periodic solutions; time delay; small global solution; abstract evolution equation; nonlinear coefficients; nonlinear right-hand side; small global solution; quasilinear telegraph equations; bounded solutions; time-periodic solutions; abstract evolution equation; nonlinear coefficients; nonlinear right-hand side; time-delay},
language = {eng},
number = {6},
pages = {456-468},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global in time solutions to quasilinear telegraph equations involving operators with time delay},
url = {http://eudml.org/doc/15693},
volume = {36},
year = {1991},
}
TY - JOUR
AU - Feireisl, Eduard
TI - Global in time solutions to quasilinear telegraph equations involving operators with time delay
JO - Applications of Mathematics
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 36
IS - 6
SP - 456
EP - 468
AB - The existence of small global (in time) solutions to an abstract evolution equation containing a damping term is proved. The result is then applied to fully nonlinear telegraph equations and to nonlinear equations involving operators with time delay.
LA - eng
KW - quasilinear telegraph equations; bounded solutions; time-periodic solutions; time delay; small global solution; abstract evolution equation; nonlinear coefficients; nonlinear right-hand side; small global solution; quasilinear telegraph equations; bounded solutions; time-periodic solutions; abstract evolution equation; nonlinear coefficients; nonlinear right-hand side; time-delay
UR - http://eudml.org/doc/15693
ER -
References
top- A. B. Aliev, The global solvability of unilateral problems for quasilinear operators of the hyperbolic type (Russian), Dokl. Akad. Nauk SSSR 298 (5) (1988), 1033-1036. (1988) MR0939671
- A. Arosio, Global (in time) solution of the approximate non-linear string equation of G. F. Carrier and R. Narasimha, Comment. Math. Univ. Carolinae 26 (1) (1985), 169-172. (1985) MR0797299
- A. Arosio, 10.1007/BF00275732, Arch. Rational Mech. Anal. 86 (2) (1984), 147-180. (1984) Zbl0563.35041MR0751306DOI10.1007/BF00275732
- P. Biler, 10.1016/0362-546X(86)90071-4, Nonlinear Anal. 10 (9) (1984), 839-842. (1984) MR0856867DOI10.1016/0362-546X(86)90071-4
- E. Feireisl, Small time-periodic solutions to a nonlinear equation of a vibrating string, Apl. mat. 32 (6) (1987), 480-490. (1987) Zbl0653.35063MR0916063
- Z. Kamont J. Turo, 10.1007/BF01769218, Ann. Mat. Рurа Appl. 143 (4) (1986), 235 - 246. (1986) MR0859605DOI10.1007/BF01769218
- T. Kato, 10.1007/BFb0067080, Lectures Notes in Mathematics 448, 25 - 70. Springer, Berlin 1975. (1975) MR0407477DOI10.1007/BFb0067080
- P. Krejčí, Hard implicit function theorem and small periodic solutions to partial differential equations, Comment. Math. Univ. Carolinae 25 (1984), 519-536. (1984) MR0775567
- J. L. Lions E. Magenes, Problèmes aux limites non homogènes et applications I, Dunod, Paris 1968. (1968)
- A. Matsumura, 10.2977/prims/1195189813, Publ. RIMS Kyoto Univ. 13 (1977), 349-379. (1977) Zbl0371.35030MR0470507DOI10.2977/prims/1195189813
- L. A. Medeiros, 10.1016/0022-247X(79)90192-6, J. Math. Anal. Appl. 69 (1) (1979), 252-262. (1979) Zbl0407.35051MR0535295DOI10.1016/0022-247X(79)90192-6
- H. Petzeltová M. Štědrý, Time periodic solutions of telegraph equations in n spatial variables, Časopis Pěst. Mat. 109 (1984), 60-73. (1984) MR0741209
- H. Poorkarimi J. Wiener, Bounded solutions of nonlinear hyperbolic equations with delay, Lecture Notes in Pure and Appl. Math. 109 (Dekker), 1987. (1987) MR0912327
- P. H. Rabmowitz, 10.1002/cpa.3160220103, Comm. Pure Appl. Math. 22 (1969), 15-39. (1969) DOI10.1002/cpa.3160220103
- Y. Shibata Y. Tsutsumi, 10.1016/0362-546X(87)90051-4, Nonlinear Anal. 11 (3) (1987), 335-365. (1987) MR0881723DOI10.1016/0362-546X(87)90051-4
- M. Štědrý, Small time-periodic solutions to fully nonlinear telegraph equations in more spatial dimensions, preprint. Ann. Inst. Henri Poincaré 6 (3) (1989), 209-232. (1989) MR0995505
- Vejvoda O., al., Partial differential equations: Time periodic solutions, Martinus Nijhoff Publ., 1982. (1982) Zbl0501.35001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.