Sur la convexité holomorphe. Théorie locale

A. Fabiano; P. Pietramala

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 3, page 597-617
  • ISSN: 0373-0956

Abstract

top
We define a geometric convexity notion for certain open subsets of C n . We prove some results about local cohomology expliciting the topology of the last non zero cohomology group ; the cohomology here considered is the Dolbeault’s cohomology of differential forms.

How to cite

top

Fabiano, A., and Pietramala, P.. "Sur la convexité holomorphe. Théorie locale." Annales de l'institut Fourier 40.3 (1990): 597-617. <http://eudml.org/doc/74889>.

@article{Fabiano1990,
abstract = {On définit une notion de convexité géométrique pour des ensembles ouverts de $\{\bf C\}^n$. On démontre des résultats de cohomologie locale précisant la topologie du dernier groupe de cohomologie non nul; la cohomologie considérée ici est la cohomologie de Dolbeault pour les formes différentielles.},
author = {Fabiano, A., Pietramala, P.},
journal = {Annales de l'institut Fourier},
keywords = {geometric convexity; Dolbeault cohomology of differential forms; polyhedra; privileged neighborhoods},
language = {fre},
number = {3},
pages = {597-617},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sur la convexité holomorphe. Théorie locale},
url = {http://eudml.org/doc/74889},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Fabiano, A.
AU - Pietramala, P.
TI - Sur la convexité holomorphe. Théorie locale
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 3
SP - 597
EP - 617
AB - On définit une notion de convexité géométrique pour des ensembles ouverts de ${\bf C}^n$. On démontre des résultats de cohomologie locale précisant la topologie du dernier groupe de cohomologie non nul; la cohomologie considérée ici est la cohomologie de Dolbeault pour les formes différentielles.
LA - fre
KW - geometric convexity; Dolbeault cohomology of differential forms; polyhedra; privileged neighborhoods
UR - http://eudml.org/doc/74889
ER -

References

top
  1. [1] A. ANDREOTTI et H. GRAUERT, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. Zbl0106.05501MR27 #343
  2. [2] A. ANDREOTTI et A. KAS, Duality on complex spaces, Ann. Sc. Norm. Sup. Pisa, 27 (1973), 187-263. Zbl0278.32007MR54 #13117
  3. [3] H. CARTAN, Théorie des fonctions de plusieurs variables, Séminaires E.N.S. 1951-1952, Paris 1952. Zbl0049.06404
  4. [4] H. CARTAN et S. EILENBERG, Homological Algebra, Princeton University Press, Princeton N.J., 1956. Zbl0075.24305MR17,1040e
  5. [5] R. GODEMENT, Théorie des faisceaux, Hermann, Paris, 1958. Zbl0080.16201
  6. [6] J.J. KOHN, Boundary Regularity of ∂ in Recent Developments in Several Complex Variables, Princeton University Press, Princeton N.J. 1981, 243-260. Zbl0469.35072
  7. [7] R. NARASIMHAN, The Levi Problem for Complex Spaces, Math. Ann., 142 (1961), 355-365. Zbl0106.28603MR26 #6439
  8. [8] R. NARASIMHAN, The Levi Problem for Complex Spaces II, Math. Ann., 146 (1962), 195-216. Zbl0131.30801MR32 #229
  9. [9] J.P. RAMIS, Théorèmes de séparation et de finitude pour l'homologie et la cohomologie des espaces (p, q)-convexes-concaves, Ann. Sc. Norm. Sup. Pisa, Ser. 3, 27 (1973), 933-997. Zbl0327.32001
  10. [10] R.M. RANGE, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer Verlag, N.Y., 1986. Zbl0591.32002MR87i:32001
  11. [11] H.H. SCHAEFER, Topological Vector Spaces, Mac Millan, N.Y., 1966. Zbl0141.30503MR33 #1689

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.