Mathematical modelling of an electrolysis process

Miloslav Feistauer; Harijs Kalis; Mirko Rokyta

Commentationes Mathematicae Universitatis Carolinae (1989)

  • Volume: 030, Issue: 3, page 465-477
  • ISSN: 0010-2628

How to cite

top

Feistauer, Miloslav, Kalis, Harijs, and Rokyta, Mirko. "Mathematical modelling of an electrolysis process." Commentationes Mathematicae Universitatis Carolinae 030.3 (1989): 465-477. <http://eudml.org/doc/17760>.

@article{Feistauer1989,
author = {Feistauer, Miloslav, Kalis, Harijs, Rokyta, Mirko},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {electrolysis; Poisson equation; Newton boundary; solvability; approximate solutions},
language = {eng},
number = {3},
pages = {465-477},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Mathematical modelling of an electrolysis process},
url = {http://eudml.org/doc/17760},
volume = {030},
year = {1989},
}

TY - JOUR
AU - Feistauer, Miloslav
AU - Kalis, Harijs
AU - Rokyta, Mirko
TI - Mathematical modelling of an electrolysis process
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1989
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 030
IS - 3
SP - 465
EP - 477
LA - eng
KW - electrolysis; Poisson equation; Newton boundary; solvability; approximate solutions
UR - http://eudml.org/doc/17760
ER -

References

top
  1. Бояревич B. B., Maтeмaтичecкaя мoдeль MГД - пpoцeccoв в aлюминиeвом електролизepe, MГД (1987), 107-115. (1987) 
  2. Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam - New York - Oxford, 1979. (1979) MR0520174
  3. Feistauer M., Mathematical and numerical study of nonlinear problems in fluid mechanics, In: Proc. of the conf. Equadiff 6 (J. Vosmanský and M. Zlámal, eds.), Springer-Verlag, 1986, pp. 3-16. (1986) Zbl0633.76025MR0877102
  4. Feistauer M., Kalis H., Rokyta M., Mathematical study and finite element approximation of a nonlinear problem describing the electrolysis process in an electrolyte layer, (to appear). 
  5. Feistauer M., Sobotíková V., Finite element approximation of nonlinear elliptic problems with discontinuous coefficients, M 2 AN, (to appear). MR1070966
  6. Feistauer M., Ženíšek A., Finite element solution of nonlinear elliptic problems, Numer. Math. 50 (1987), 451-475. (1987) MR0875168
  7. Feistauer M., Ženíšek A., Compactness method in the finite element theory of nonlinear elliptic problems, Numer. Math. 52 (1988), 147-163. (1988) MR0923708
  8. Fučík S., Kufner A., Nonlinear Differential Equations, Studies in Applied Mathematics 2, Elsevier, Amsterdam - Oxford - New York, 1980. (1980) MR0558764
  9. Kawohl B., Coerciveness for second-order elliptic differential equations with unilateral constraints, Nonlinear Analysis 2 (1978), 189-196. (1978) Zbl0373.35023MR0512282
  10. Kufner A., John O., Fučík, Function Spaces, Academia, Prague, 1977. (1977) 
  11. Ладыженская O. A., Уральцева H. H., Линейные и квазилинейные уравнения параболичecкoro тиna, Hayкa, Mocквa, 1973. (1973) 
  12. Lions J. L., Quelques méthodes de résolution des problémes aux limites non lineaires, Dunod, Paris, 1969. (1969) Zbl0189.40603MR0259693
  13. Moreau R., Ewans J. W., An analysis of the hydrodynamics of aluminium reduction cells, J. Electrochem. Soc. 31 (1984), 2251-2259. (1984) 
  14. Nečas J., Les méthodes directes en théorie des equations elliptiques, Academia, Prague, 1967. (1967) MR0227584
  15. Nečas J., Introduction to the Theory of Nonlinear Elliptic Equations, Teubner Texte zur Mathematik, Band 52, Leipzig, 1983. (1983) MR0731261
  16. Baйнберг М. М., Bapиaционный метод и метод монотонных onepaтоpoв, Hayкa, Mocквa, 1972. (1972) 

Citations in EuDML Documents

top
  1. Ondřej Bartoš, Miloslav Feistauer, Filip Roskovec, On the effect of numerical integration in the finite element solution of an elliptic problem with a nonlinear Newton boundary condition
  2. Miloslav Feistauer, Karel Najzar, Veronika Sobotíková, On the finite element analysis of problems with nonlinear Newton boundary conditions in nonpolygonal domains
  3. Miloslav Feistauer, Karel Najzar, Karel Švadlenka, On a parabolic problem with nonlinear Newton boundary conditions

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.