On a parabolic problem with nonlinear Newton boundary conditions

Miloslav Feistauer; Karel Najzar; Karel Švadlenka

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 3, page 429-455
  • ISSN: 0010-2628

Abstract

top
The paper is concerned with the study of a parabolic initial-boundary value problem with nonlinear Newton boundary condition considered in a two-dimensional domain. The goal is to prove the existence and uniqueness of a weak solution to the problem in the case when the nonlinearity in the Newton boundary condition does not satisfy any monotonicity condition and to analyze the finite element approximation.

How to cite

top

Feistauer, Miloslav, Najzar, Karel, and Švadlenka, Karel. "On a parabolic problem with nonlinear Newton boundary conditions." Commentationes Mathematicae Universitatis Carolinae 43.3 (2002): 429-455. <http://eudml.org/doc/248979>.

@article{Feistauer2002,
abstract = {The paper is concerned with the study of a parabolic initial-boundary value problem with nonlinear Newton boundary condition considered in a two-dimensional domain. The goal is to prove the existence and uniqueness of a weak solution to the problem in the case when the nonlinearity in the Newton boundary condition does not satisfy any monotonicity condition and to analyze the finite element approximation.},
author = {Feistauer, Miloslav, Najzar, Karel, Švadlenka, Karel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {parabolic convection-diffusion equation; nonlinear Newton boundary condition; Galerkin method; compactness method; finite element approximation; error estimates; parabolic convection-diffusion equation; nonlinear Newton boundary condition; finite element method},
language = {eng},
number = {3},
pages = {429-455},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a parabolic problem with nonlinear Newton boundary conditions},
url = {http://eudml.org/doc/248979},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Feistauer, Miloslav
AU - Najzar, Karel
AU - Švadlenka, Karel
TI - On a parabolic problem with nonlinear Newton boundary conditions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 3
SP - 429
EP - 455
AB - The paper is concerned with the study of a parabolic initial-boundary value problem with nonlinear Newton boundary condition considered in a two-dimensional domain. The goal is to prove the existence and uniqueness of a weak solution to the problem in the case when the nonlinearity in the Newton boundary condition does not satisfy any monotonicity condition and to analyze the finite element approximation.
LA - eng
KW - parabolic convection-diffusion equation; nonlinear Newton boundary condition; Galerkin method; compactness method; finite element approximation; error estimates; parabolic convection-diffusion equation; nonlinear Newton boundary condition; finite element method
UR - http://eudml.org/doc/248979
ER -

References

top
  1. Barber S.A., Soil Nutrient Bioavailability: A Mechanistic Approach, John Wiley & Sons, Inc., New York, 1995. 
  2. Bialecki R., Nowak A.J., Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions, Appl. Math. Model. 5 (1981), 417-421. (1981) Zbl0475.65078
  3. Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, Springer, New York, 1994. Zbl1135.65042MR1278258
  4. Chow S.S., Finite element error estimates for nonlinear elliptic equations of monotone type, Numer. Math. 54 (1989), 373-393. (1989) MR0972416
  5. Ciarlet P.G., The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978. Zbl0547.65072MR0520174
  6. Ciarlet P.G., Raviart P.A., The combined effect of curved boundaries and numerical integration in isoparametric finite element method, in: The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations (A.K. Aziz, Ed.), Academic Press, New York, 1972. MR0421108
  7. Claassen N., Barber S.A., Simulation model for nutrient uptake from soil by a growing plant root system, Agronomy Journal 68 (1976), 961-964. (1976) 
  8. Cwikel M., Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65.2 (1992), 333-343. (1992) Zbl0787.46062MR1150590
  9. Dolejší V., Feistauer M., Schwab C., A finite volume discontinuous Galerkin scheme for nonlinear convection-diffusion problems, preprint, Forschungsinstitut für Mathematik, ETH Zürich, January 2001 (to appear in Calcolo). MR1901200
  10. Feistauer M., Mathematical Methods in Fluid Mechanics, The Pitman Monographs and Surveys in Pure and Applied Mathematics 67, Longman Scientific and Technical Series, Harlow, 1993. MR1266627
  11. Feistauer M., Kalis H., Rokyta M., Mathematical modelling of an electrolysis process, Comment Math. Univ. Carolinae 30 (1989), 465-477. (1989) Zbl0704.35021MR1031864
  12. Feistauer M., Najzar K., Finite element approximation of a problem with a nonlinear Newton boundary condition, Numer. Math. 78 (1998), 403-425. (1998) Zbl0888.65118MR1603350
  13. Feistauer M., Najzar K., Sobotíková V., Error estimates for the finite element solution of elliptic problems with nonlinear Newton boundary conditions, Numer. Funct. Anal. Optim. 20 (1999), 835-851. (1999) MR1728186
  14. Feistauer M., Najzar K., Sobotíková V., On the finite element analysis of problems with nonlinear Newton boundary conditions in nonpolygonal domains, Appl. Math. 46 (2001), 353-382. (2001) Zbl1066.65124MR1925193
  15. Feistauer M., Najzar K., Sobotíková V., Sváček P., Numerical analysis of problems with nonlinear Newton boundary conditions, in: Proc. of the 3rd European Conference Numerical Mathematics and Advanced Applications (P. Neittaanmäki, T. Tiihonen, P. Tarvainen, Editors), World Scientific, Singapore, 2000, pp.486-493. 
  16. Feistauer M., Sobotíková V., Finite element approximation of nonlinear elliptic problems with discontinuous coefficients, MAN 24 (1990), 457-500. (1990) MR1070966
  17. Feistauer M., Ženíšek A., Finite element solution of nonlinear elliptic problems, Numer. Math. 50 (1987), 451-475. (1987) MR0875168
  18. Ganesh M., Graham I.G., Sivaloganathan J., A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity, SIAM J. Numer. Anal. 31 (1994), 1378-1414. (1994) Zbl0815.41008MR1293521
  19. Ganesh M., Steinbach O., Boundary element methods for potential problems with nonlinear boundary conditions, Applied Mathematics Report AMR98/17, School of Mathematics, The University of New South Wales, Sydney, 1998. Zbl0971.65107
  20. Ganesh M., Steinbach O., Nonlinear boundary integral equations for harmonic problems, Applied Mathematics Report AMR98/20, School of Mathematics, The University of New South Wales, Sydney, 1998. Zbl0974.65112MR1738277
  21. Girault V., Raviart P.A., Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics 749, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl0441.65081MR0548867
  22. Křížek M., Liu L., Neittaanmäki P., Finite element analysis of a nonlinear elliptic problem with a pure radiation condition, in: Applied Nonlinear Analysis, Kluwer, Amsterdam, 1999, pp.271-280. MR1727454
  23. Kufner A., John O., Fučík S., Function Spaces, Academia, Prague, 1977. MR0482102
  24. Kurzweil J., Ordinary Differential Equations, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1986. Zbl0756.34003MR0929466
  25. Lions J.L., Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969. Zbl0248.35001MR0259693
  26. Lions J.L., Magenes E., Problémes aux limites non homogénes et applications, Dunod, Paris, 1968. Zbl0212.43801
  27. Liu L., Křížek M., Finite element analysis of a radiation heat transfer problem, J. Comput. Math. 16 (1998), 327-336. (1998) 
  28. Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman & Hall, London, 1996. MR1409366
  29. Moreau R., Ewans J.W., An analysis of the hydrodynamics of aluminium reduction cells, J. Electrochem. Soc. 31 (1984), 2251-2259. (1984) 
  30. Nečas J., Les méthodes directes en théories des équations elliptiques, Academia, Prague, 1967. MR0227584
  31. Sváček P., Higher order finite element method for a problem with nonlinear boundary condition, in: Proc. of the 13th Summer School ``Software and Algorithms of Numerical Mathematics'', West Bohemian University Pilsen, 1999, pp.301-308. 
  32. Temam R., Navier-Stokes Equations, North-Holland, Amsterdam-New York-Oxford, 1977. Zbl1157.35333MR0603444
  33. Ženíšek A., Nonhomogeneous boundary conditions and curved triangular finite elements, Appl. Math. 26 (1981), 121-141. (1981) MR0612669
  34. Ženíšek A., The finite element method for nonlinear elliptic equations with discontinuous coefficients, Numer. Math. 58 (1990), 51-77. (1990) MR1069653
  35. Zlámal M., Curved elements in the finite element method, I. SIAM J. Numer. Anal. 10 (1973), 229-240. (1973) MR0395263

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.