On a parabolic problem with nonlinear Newton boundary conditions
Miloslav Feistauer; Karel Najzar; Karel Švadlenka
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 3, page 429-455
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFeistauer, Miloslav, Najzar, Karel, and Švadlenka, Karel. "On a parabolic problem with nonlinear Newton boundary conditions." Commentationes Mathematicae Universitatis Carolinae 43.3 (2002): 429-455. <http://eudml.org/doc/248979>.
@article{Feistauer2002,
abstract = {The paper is concerned with the study of a parabolic initial-boundary value problem with nonlinear Newton boundary condition considered in a two-dimensional domain. The goal is to prove the existence and uniqueness of a weak solution to the problem in the case when the nonlinearity in the Newton boundary condition does not satisfy any monotonicity condition and to analyze the finite element approximation.},
author = {Feistauer, Miloslav, Najzar, Karel, Švadlenka, Karel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {parabolic convection-diffusion equation; nonlinear Newton boundary condition; Galerkin method; compactness method; finite element approximation; error estimates; parabolic convection-diffusion equation; nonlinear Newton boundary condition; finite element method},
language = {eng},
number = {3},
pages = {429-455},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a parabolic problem with nonlinear Newton boundary conditions},
url = {http://eudml.org/doc/248979},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Feistauer, Miloslav
AU - Najzar, Karel
AU - Švadlenka, Karel
TI - On a parabolic problem with nonlinear Newton boundary conditions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 3
SP - 429
EP - 455
AB - The paper is concerned with the study of a parabolic initial-boundary value problem with nonlinear Newton boundary condition considered in a two-dimensional domain. The goal is to prove the existence and uniqueness of a weak solution to the problem in the case when the nonlinearity in the Newton boundary condition does not satisfy any monotonicity condition and to analyze the finite element approximation.
LA - eng
KW - parabolic convection-diffusion equation; nonlinear Newton boundary condition; Galerkin method; compactness method; finite element approximation; error estimates; parabolic convection-diffusion equation; nonlinear Newton boundary condition; finite element method
UR - http://eudml.org/doc/248979
ER -
References
top- Barber S.A., Soil Nutrient Bioavailability: A Mechanistic Approach, John Wiley & Sons, Inc., New York, 1995.
- Bialecki R., Nowak A.J., Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions, Appl. Math. Model. 5 (1981), 417-421. (1981) Zbl0475.65078
- Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, Springer, New York, 1994. Zbl1135.65042MR1278258
- Chow S.S., Finite element error estimates for nonlinear elliptic equations of monotone type, Numer. Math. 54 (1989), 373-393. (1989) MR0972416
- Ciarlet P.G., The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978. Zbl0547.65072MR0520174
- Ciarlet P.G., Raviart P.A., The combined effect of curved boundaries and numerical integration in isoparametric finite element method, in: The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations (A.K. Aziz, Ed.), Academic Press, New York, 1972. MR0421108
- Claassen N., Barber S.A., Simulation model for nutrient uptake from soil by a growing plant root system, Agronomy Journal 68 (1976), 961-964. (1976)
- Cwikel M., Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65.2 (1992), 333-343. (1992) Zbl0787.46062MR1150590
- Dolejší V., Feistauer M., Schwab C., A finite volume discontinuous Galerkin scheme for nonlinear convection-diffusion problems, preprint, Forschungsinstitut für Mathematik, ETH Zürich, January 2001 (to appear in Calcolo). MR1901200
- Feistauer M., Mathematical Methods in Fluid Mechanics, The Pitman Monographs and Surveys in Pure and Applied Mathematics 67, Longman Scientific and Technical Series, Harlow, 1993. MR1266627
- Feistauer M., Kalis H., Rokyta M., Mathematical modelling of an electrolysis process, Comment Math. Univ. Carolinae 30 (1989), 465-477. (1989) Zbl0704.35021MR1031864
- Feistauer M., Najzar K., Finite element approximation of a problem with a nonlinear Newton boundary condition, Numer. Math. 78 (1998), 403-425. (1998) Zbl0888.65118MR1603350
- Feistauer M., Najzar K., Sobotíková V., Error estimates for the finite element solution of elliptic problems with nonlinear Newton boundary conditions, Numer. Funct. Anal. Optim. 20 (1999), 835-851. (1999) MR1728186
- Feistauer M., Najzar K., Sobotíková V., On the finite element analysis of problems with nonlinear Newton boundary conditions in nonpolygonal domains, Appl. Math. 46 (2001), 353-382. (2001) Zbl1066.65124MR1925193
- Feistauer M., Najzar K., Sobotíková V., Sváček P., Numerical analysis of problems with nonlinear Newton boundary conditions, in: Proc. of the 3rd European Conference Numerical Mathematics and Advanced Applications (P. Neittaanmäki, T. Tiihonen, P. Tarvainen, Editors), World Scientific, Singapore, 2000, pp.486-493.
- Feistauer M., Sobotíková V., Finite element approximation of nonlinear elliptic problems with discontinuous coefficients, MAN 24 (1990), 457-500. (1990) MR1070966
- Feistauer M., Ženíšek A., Finite element solution of nonlinear elliptic problems, Numer. Math. 50 (1987), 451-475. (1987) MR0875168
- Ganesh M., Graham I.G., Sivaloganathan J., A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity, SIAM J. Numer. Anal. 31 (1994), 1378-1414. (1994) Zbl0815.41008MR1293521
- Ganesh M., Steinbach O., Boundary element methods for potential problems with nonlinear boundary conditions, Applied Mathematics Report AMR98/17, School of Mathematics, The University of New South Wales, Sydney, 1998. Zbl0971.65107
- Ganesh M., Steinbach O., Nonlinear boundary integral equations for harmonic problems, Applied Mathematics Report AMR98/20, School of Mathematics, The University of New South Wales, Sydney, 1998. Zbl0974.65112MR1738277
- Girault V., Raviart P.A., Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics 749, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl0441.65081MR0548867
- Křížek M., Liu L., Neittaanmäki P., Finite element analysis of a nonlinear elliptic problem with a pure radiation condition, in: Applied Nonlinear Analysis, Kluwer, Amsterdam, 1999, pp.271-280. MR1727454
- Kufner A., John O., Fučík S., Function Spaces, Academia, Prague, 1977. MR0482102
- Kurzweil J., Ordinary Differential Equations, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1986. Zbl0756.34003MR0929466
- Lions J.L., Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969. Zbl0248.35001MR0259693
- Lions J.L., Magenes E., Problémes aux limites non homogénes et applications, Dunod, Paris, 1968. Zbl0212.43801
- Liu L., Křížek M., Finite element analysis of a radiation heat transfer problem, J. Comput. Math. 16 (1998), 327-336. (1998)
- Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman & Hall, London, 1996. MR1409366
- Moreau R., Ewans J.W., An analysis of the hydrodynamics of aluminium reduction cells, J. Electrochem. Soc. 31 (1984), 2251-2259. (1984)
- Nečas J., Les méthodes directes en théories des équations elliptiques, Academia, Prague, 1967. MR0227584
- Sváček P., Higher order finite element method for a problem with nonlinear boundary condition, in: Proc. of the 13th Summer School ``Software and Algorithms of Numerical Mathematics'', West Bohemian University Pilsen, 1999, pp.301-308.
- Temam R., Navier-Stokes Equations, North-Holland, Amsterdam-New York-Oxford, 1977. Zbl1157.35333MR0603444
- Ženíšek A., Nonhomogeneous boundary conditions and curved triangular finite elements, Appl. Math. 26 (1981), 121-141. (1981) MR0612669
- Ženíšek A., The finite element method for nonlinear elliptic equations with discontinuous coefficients, Numer. Math. 58 (1990), 51-77. (1990) MR1069653
- Zlámal M., Curved elements in the finite element method, I. SIAM J. Numer. Anal. 10 (1973), 229-240. (1973) MR0395263
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.