Convergence analysis of finite difference schemes for semi-linear initial-value problems
- Volume: 10, Issue: R2, page 61-86
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLöfström, J., and Thomée, V.. "Convergence analysis of finite difference schemes for semi-linear initial-value problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 10.R2 (1976): 61-86. <http://eudml.org/doc/193280>.
@article{Löfström1976,
author = {Löfström, J., Thomée, V.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {61-86},
publisher = {Dunod},
title = {Convergence analysis of finite difference schemes for semi-linear initial-value problems},
url = {http://eudml.org/doc/193280},
volume = {10},
year = {1976},
}
TY - JOUR
AU - Löfström, J.
AU - Thomée, V.
TI - Convergence analysis of finite difference schemes for semi-linear initial-value problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1976
PB - Dunod
VL - 10
IS - R2
SP - 61
EP - 86
LA - eng
UR - http://eudml.org/doc/193280
ER -
References
top- 1. R. ANSORGE, C. GEIGER and R. HASS, Existenz und numerische Erfassbarkeit verallgemeinerter Losungen halblinearer Anfangswertaufgaben, Z. Angew. Math. Mech., Vol. 52, 1972, pp. 597-605. Zbl0251.65060MR391525
- 2. R. ANSORGE and R. HASS, Konvergenz von Differenzenverfahren für lineare und nichtlineare Anfangswertaufgaben. Lecture Notes in Mathematics, n° 159, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0213.11305MR292311
- 3. P. BRENNER, V. THOMÉE and L. B. WAHLBIN, Besov Spaces and Applications to Difference Methods for Initial Value Problems, Lecture Notes in Mathematics, n° 434, Springer-Verlag, Berlin-Heidelberg-New York, 1975. Zbl0294.35002MR461121
- 4. P. L. BUTZER and H. BERENS, Semi-groups of Operators and Approximation. Springer-Verlag, Berlin-Heidelberg-New York, 1967. Zbl0164.43702MR230022
- 5. K. JÖRGENS, Das Anfangswertproblem in Grossen für eine klasse nichtlinearer Wellengleichungen, Math. Z., Vol. 77, 1961, pp. 295-308. Zbl0111.09105MR130462
- 6. J.-L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod - Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
- 7. J. LÖFSTRÖM, Besov Spaces in the Theory of Approximation, Ann. Mat. Pura Appl., Vol. 55, 1970, pp. 93-184. Zbl0193.41401MR267332
- 8. J. PEETRE, Espaces d'interpolation et théorème de Soboleff, Ann. Inst. Fourier, Vol. 16, 1966, pp. 279-317. Zbl0151.17903MR221282
- 9. PEETRE, Applications de la théorie des espaces d'interpolation dans l'analyse harmonique, Ricerche Mat., Vol. 15, 1966, pp. 1-36. Zbl0154.15302
- 10. J. PEETRE, Interpolation of Lipschitz Operators and Metric Spaces, Mathematica, 12, (35), No. 2, 1970, pp. 325-334. Zbl0217.44504MR482280
- 11. I. E . SEGAL, Non-Linear Semi-Groups, Ann. Math., 78, 1963, pp. 339-364. Zbl0204.16004MR152908
- 12. V. THOMÉE, Convergence Analysis of a Finite Difference Scheme for a Simple Semi-Linear Hyperbolic Equation (Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen), Lecture Notes in Mathematics, n° 395, Springer-Verlag, Berlin-Heidelberg-New York, 1974, pp. 149-166. Zbl0289.65038MR356531
- 13. V. THOMÉE, On the Rate of Convergence of Différence Schemes for Hyperbolic Equations (Numerical Solutions of Partial Differential Equations II), Ed. B. HUBBARD, Academic Press, New York, 1971, pp. 585-622.. Zbl0237.65055
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.