L -convergence of saddle-point approximations for second order problems

Reinhard Scholz

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1977)

  • Volume: 11, Issue: 2, page 209-216
  • ISSN: 0764-583X

How to cite

top

Scholz, Reinhard. "$L_\infty $-convergence of saddle-point approximations for second order problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 11.2 (1977): 209-216. <http://eudml.org/doc/193297>.

@article{Scholz1977,
author = {Scholz, Reinhard},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {2},
pages = {209-216},
publisher = {Dunod},
title = {$L_\infty $-convergence of saddle-point approximations for second order problems},
url = {http://eudml.org/doc/193297},
volume = {11},
year = {1977},
}

TY - JOUR
AU - Scholz, Reinhard
TI - $L_\infty $-convergence of saddle-point approximations for second order problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1977
PB - Dunod
VL - 11
IS - 2
SP - 209
EP - 216
LA - eng
UR - http://eudml.org/doc/193297
ER -

References

top
  1. 1. P. G. CIARLET and P.A. RAVIARTG, General Lagrange and Hermite interpolation in Rn with applications to finite element methods. Archive Rational Mech. Anal., Vol. 46, 1972, pp. 177-199. Zbl0243.41004MR336957
  2. 2. F. NATTERER, Über die punkweise Konvergenz finiter Elemente, Numer. Math., Vol.25, 1975. pp. 67-77, Zbl0331.65073MR474884
  3. 3. J. NITSCHE, L - convergence of finite element approximation, Second Conference on Finite Elements, Rennes, France. (To appear). MR568857
  4. 4. J. NITSCHE, Über L -Abschätzungen von Projektionen auf finite Elemente, Bonner Mathematische Schriften Vol. 89, 1976, pp. 13-30. Zbl0358.65094MR451780
  5. 5. P. A. RAVIART and J. M. THOMAS, A mixed finite element method for second order elliptic problems. (To appear). Zbl0362.65089
  6. 6. R. SCHOLZ, Approximation von Sattelpunkten mit finiten Elementen, Bonner Mathe-matische Schriften Vol. 89, 1976, pp, 53-66. Zbl0359.65096MR471377
  7. 7. YOSIDA, Functional analysis, Springer Verlag, Berlin-Heidelberg-New York, 1965. Zbl0126.11504

Citations in EuDML Documents

top
  1. Jr. J. Douglas, F. A. Milner, Interior and superconvergence estimates for mixed methods for second order elliptic problems
  2. Jim Jr. Douglas, Richard E. Ewing, Mary Fanett Wheeler, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media
  3. Claes Johnson, Vidar Thomee, Error estimates for some mixed finite element methods for parabolic type problems
  4. Ricardo G. Durán, Error analysis in L p p , for mixed finite element methods for linear and quasi-linear elliptic problems
  5. Lucia Gastaldi, Ricardo H. Nochetto, Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.