Error analysis in , for mixed finite element methods for linear and quasi-linear elliptic problems
- Volume: 22, Issue: 3, page 371-387
- ISSN: 0764-583X
Access Full Article
topHow to cite
topDurán, Ricardo G.. "Error analysis in $L^p \leqslant p \leqslant \infty $, for mixed finite element methods for linear and quasi-linear elliptic problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.3 (1988): 371-387. <http://eudml.org/doc/193534>.
@article{Durán1988,
author = {Durán, Ricardo G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {second order elliptic problems; error estimates; stability; Ritz projection; finite element method; quasi-linear},
language = {eng},
number = {3},
pages = {371-387},
publisher = {Dunod},
title = {Error analysis in $L^p \leqslant p \leqslant \infty $, for mixed finite element methods for linear and quasi-linear elliptic problems},
url = {http://eudml.org/doc/193534},
volume = {22},
year = {1988},
}
TY - JOUR
AU - Durán, Ricardo G.
TI - Error analysis in $L^p \leqslant p \leqslant \infty $, for mixed finite element methods for linear and quasi-linear elliptic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 3
SP - 371
EP - 387
LA - eng
KW - second order elliptic problems; error estimates; stability; Ritz projection; finite element method; quasi-linear
UR - http://eudml.org/doc/193534
ER -
References
top- [1] F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O., Anal. Numér. 2, 1974, pp. 129-151. Zbl0338.90047MR365287
- [2] F. BREZZI, J. DOUGLAS Jr., L.D. MARINI, TWOfamilies of mixed finite elements for second order elliptic problems, Numer. Math. 47, 1985, pp. 217-235. Zbl0599.65072MR799685
- [3] A.P. CALDERON, A. ZYGMUND, On the existence of certain singular integrals, Acta Math. 88, 1952, pp. 85-139. Zbl0047.10201MR52553
- [4] S. CAMPANATO, G. STAMPACCHIA, Sulle maggiorazioni in nella teoria della equazioni ellittiche, Boll. UMI 20, 1965, pp. 393-399. Zbl0142.37604MR192169
- [5] J. DOUGLAS Jr., R. EWING, M. WHEELER, Approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O., Anal. Numér. 17, 1983, pp. 17-33. Zbl0516.76094MR695450
- [6] J. DOUGLAS Jr., I. MARTINEZ GAMBA, C. SQUEFF, Simulation of the transient behavior of one dimensional semiconductor device, to appear. Zbl0625.65123
- [7] J. DOUGLAS Jr., J.E. ROBERTS, Mixed finite element methods for second order elliptic problems. Mat. Aplic. Comp. 1, 1982, pp. 91-103. Zbl0482.65057MR667620
- [8] J. DOUGLAS Jr., J.E. ROBERTS, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44, 1985, pp. 39-52. Zbl0624.65109MR771029
- [9] M. FORTIN, An analysis of the convergence of mixed finite element methods, R.A.I.R.O., Anal. Numer. 11, 1977, pp. 341-354. Zbl0373.65055MR464543
- [10] L. GASTALDI, R. H. NOCHETTO, Optimal -error estimates for nonconforming and mixed finite element methods of lowest order. Numer. Math. 50, 3, 1987, pp. 587-611. Zbl0597.65080MR880337
- [11] L. GASTALDI, R. H. NOCHETTO, On -accuracy of mixed finite element methods for second order elliptic problems, to appear. Zbl0677.65103
- [12] L. GASTALDI, R. H. NOCHETTO, Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations, to appear. Zbl0673.65060MR1015921
- [13] D. GILBARG, N.S TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [14] C. JOHNSON, V. THOMEE, Error estimates for some mixed finite element methods for parabolic type problems, R.A.I.R.O., Anal. Numer. 15, 1981, pp. 41-78. Zbl0476.65074MR610597
- [15] Y. KWON, F. MILNER, Some new estimates for mixed finite element methods, to appear. Zbl0624.65098
- [16] Y. KWON, F. MILNER, -error estimates for mixed methods for semilinear second order elliptic problems, to appear. Zbl0643.65057
- [17] F. MILNER, Mixed finite element methods for quasilinear second-order elliptic problems, Math. Comp. 44, 1985, pp. 303-320. Zbl0567.65079MR777266
- [18] J. NEDELEC, Mixed finite elements in , Numer. Math. 35, 1980, pp. 315-341. Zbl0419.65069MR592160
- [19] J. A. NITSCHE, -convergence of finite element methods, 2nd Conference on Finite Elements, Rennes, France, May 12-14 (1975). MR568857
- [20] R. RANNACHER, R. SCOTT, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38, 1982, pp. 437-445. Zbl0483.65007MR645661
- [21] P. A. RAVIART, J. M. THOMAS, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Math N 606, Springer-Verlag, Berlin, 1977, pp. 292-315. Zbl0362.65089MR483555
- [22] M. SCHECHTER, On estimates and regularity, I., Amer. J. Math. 85, 1963, pp. 1-13. Zbl0113.30603MR188615
- [23] R. SCHOLZ, -convergence of saddle-point approximations for second order problems, R.A.I.R.O., Anal. Numer. 11, 1977, pp. 209-216. Zbl0356.35026MR448942
- [24] R. SCHOLZ, Optimal -estimates for a mixed finite element for elliptic and parabolic problems, Calcolo 20, 1983, pp. 355-377. Zbl0571.65092MR761790
- [25] R. SCHOLZ, A remark on the rate of convergence for mixed finite element method for second order problems, Numer. Funct. Anal. Optim. 4, 1981-1982, pp. 269-277. Zbl0481.65066MR665363
- [26] E. STEIN, Singular integrals and differantiability propreties of functions, Princeton University Press, Princeton (1970). Zbl0207.13501
Citations in EuDML Documents
top- Zhangxin Chen, Expanded mixed finite element methods for linear second-order elliptic problems, I
- Lucia Gastaldi, Ricardo H. Nochetto, Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations
- Kwang Y. Kim, New mixed finite volume methods for second order eliptic problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.