Error analysis in L p p , for mixed finite element methods for linear and quasi-linear elliptic problems

Ricardo G. Durán

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 3, page 371-387
  • ISSN: 0764-583X

How to cite

top

Durán, Ricardo G.. "Error analysis in $L^p \leqslant p \leqslant \infty $, for mixed finite element methods for linear and quasi-linear elliptic problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.3 (1988): 371-387. <http://eudml.org/doc/193534>.

@article{Durán1988,
author = {Durán, Ricardo G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {second order elliptic problems; error estimates; stability; Ritz projection; finite element method; quasi-linear},
language = {eng},
number = {3},
pages = {371-387},
publisher = {Dunod},
title = {Error analysis in $L^p \leqslant p \leqslant \infty $, for mixed finite element methods for linear and quasi-linear elliptic problems},
url = {http://eudml.org/doc/193534},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Durán, Ricardo G.
TI - Error analysis in $L^p \leqslant p \leqslant \infty $, for mixed finite element methods for linear and quasi-linear elliptic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 3
SP - 371
EP - 387
LA - eng
KW - second order elliptic problems; error estimates; stability; Ritz projection; finite element method; quasi-linear
UR - http://eudml.org/doc/193534
ER -

References

top
  1. [1] F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O., Anal. Numér. 2, 1974, pp. 129-151. Zbl0338.90047MR365287
  2. [2] F. BREZZI, J. DOUGLAS Jr., L.D. MARINI, TWOfamilies of mixed finite elements for second order elliptic problems, Numer. Math. 47, 1985, pp. 217-235. Zbl0599.65072MR799685
  3. [3] A.P. CALDERON, A. ZYGMUND, On the existence of certain singular integrals, Acta Math. 88, 1952, pp. 85-139. Zbl0047.10201MR52553
  4. [4] S. CAMPANATO, G. STAMPACCHIA, Sulle maggiorazioni in L p nella teoria della equazioni ellittiche, Boll. UMI 20, 1965, pp. 393-399. Zbl0142.37604MR192169
  5. [5] J. DOUGLAS Jr., R. EWING, M. WHEELER, Approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O., Anal. Numér. 17, 1983, pp. 17-33. Zbl0516.76094MR695450
  6. [6] J. DOUGLAS Jr., I. MARTINEZ GAMBA, C. SQUEFF, Simulation of the transient behavior of one dimensional semiconductor device, to appear. Zbl0625.65123
  7. [7] J. DOUGLAS Jr., J.E. ROBERTS, Mixed finite element methods for second order elliptic problems. Mat. Aplic. Comp. 1, 1982, pp. 91-103. Zbl0482.65057MR667620
  8. [8] J. DOUGLAS Jr., J.E. ROBERTS, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44, 1985, pp. 39-52. Zbl0624.65109MR771029
  9. [9] M. FORTIN, An analysis of the convergence of mixed finite element methods, R.A.I.R.O., Anal. Numer. 11, 1977, pp. 341-354. Zbl0373.65055MR464543
  10. [10] L. GASTALDI, R. H. NOCHETTO, Optimal L -error estimates for nonconforming and mixed finite element methods of lowest order. Numer. Math. 50, 3, 1987, pp. 587-611. Zbl0597.65080MR880337
  11. [11] L. GASTALDI, R. H. NOCHETTO, On L -accuracy of mixed finite element methods for second order elliptic problems, to appear. Zbl0677.65103
  12. [12] L. GASTALDI, R. H. NOCHETTO, Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations, to appear. Zbl0673.65060MR1015921
  13. [13] D. GILBARG, N.S TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  14. [14] C. JOHNSON, V. THOMEE, Error estimates for some mixed finite element methods for parabolic type problems, R.A.I.R.O., Anal. Numer. 15, 1981, pp. 41-78. Zbl0476.65074MR610597
  15. [15] Y. KWON, F. MILNER, Some new L estimates for mixed finite element methods, to appear. Zbl0624.65098
  16. [16] Y. KWON, F. MILNER, L -error estimates for mixed methods for semilinear second order elliptic problems, to appear. Zbl0643.65057
  17. [17] F. MILNER, Mixed finite element methods for quasilinear second-order elliptic problems, Math. Comp. 44, 1985, pp. 303-320. Zbl0567.65079MR777266
  18. [18] J. NEDELEC, Mixed finite elements in R 3 , Numer. Math. 35, 1980, pp. 315-341. Zbl0419.65069MR592160
  19. [19] J. A. NITSCHE, L -convergence of finite element methods, 2nd Conference on Finite Elements, Rennes, France, May 12-14 (1975). MR568857
  20. [20] R. RANNACHER, R. SCOTT, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38, 1982, pp. 437-445. Zbl0483.65007MR645661
  21. [21] P. A. RAVIART, J. M. THOMAS, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Math N 606, Springer-Verlag, Berlin, 1977, pp. 292-315. Zbl0362.65089MR483555
  22. [22] M. SCHECHTER, On L p estimates and regularity, I., Amer. J. Math. 85, 1963, pp. 1-13. Zbl0113.30603MR188615
  23. [23] R. SCHOLZ, L -convergence of saddle-point approximations for second order problems, R.A.I.R.O., Anal. Numer. 11, 1977, pp. 209-216. Zbl0356.35026MR448942
  24. [24] R. SCHOLZ, Optimal L -estimates for a mixed finite element for elliptic and parabolic problems, Calcolo 20, 1983, pp. 355-377. Zbl0571.65092MR761790
  25. [25] R. SCHOLZ, A remark on the rate of convergence for mixed finite element method for second order problems, Numer. Funct. Anal. Optim. 4, 1981-1982, pp. 269-277. Zbl0481.65066MR665363
  26. [26] E. STEIN, Singular integrals and differantiability propreties of functions, Princeton University Press, Princeton (1970). Zbl0207.13501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.