Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations

Lucia Gastaldi; Ricardo H. Nochetto

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 1, page 103-128
  • ISSN: 0764-583X

How to cite

top

Gastaldi, Lucia, and Nochetto, Ricardo H.. "Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.1 (1989): 103-128. <http://eudml.org/doc/193547>.

@article{Gastaldi1989,
author = {Gastaldi, Lucia, Nochetto, Ricardo H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {maximum norm error estimates; superconvergence; mixed finite elements; sharp error bounds; rates of convergence; Nitsche's method; weighted Sobolev norms; optimal error bounds},
language = {eng},
number = {1},
pages = {103-128},
publisher = {Dunod},
title = {Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations},
url = {http://eudml.org/doc/193547},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Gastaldi, Lucia
AU - Nochetto, Ricardo H.
TI - Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 1
SP - 103
EP - 128
LA - eng
KW - maximum norm error estimates; superconvergence; mixed finite elements; sharp error bounds; rates of convergence; Nitsche's method; weighted Sobolev norms; optimal error bounds
UR - http://eudml.org/doc/193547
ER -

References

top
  1. [1] S. AGMON, A. DOUGLIS, L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math., 12 (1959), pp. 623-727. Zbl0093.10401MR125307
  2. [2] D. N. ARNOLD, F. BREZZI, Mixed and nonconforming finite element methods : implementation, post-processing and error estimates, R.A.I.R.O. Model. Math Anal. Numér, 19, 1 (1985), pp. 7-35. Zbl0567.65078MR813687
  3. [3] F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O. Anal. Numér., 2 (1974), pp. 129-151. Zbl0338.90047MR365287
  4. [4] F. BREZZI, J. Jr. DOUGLAS, R. DURÁN, M. FORTIN, Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 51 (1987) pp. 237-250. Zbl0631.65107MR890035
  5. [5] F. BREZZI, J. Jr. DOUGLAS, M. FORTIN, L. D. MARINI, Efficient rectangular mixed finite elements in two and three space variables, R.A.I.R.O. Model. Math. Anal. Numér., 21, 4 (1987), pp. 581-604. Zbl0689.65065MR921828
  6. [6] F. BREZZI, J. Jr. DOUGLAS, L. D. MARINI, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), pp. 217-235. Zbl0599.65072MR799685
  7. [7] F. BREZZI, J. Jr. DOUGLAS, L. D. MARINI, Variable degree mixed methods for second order elliptic problems, Mat. Apl. Comput., 4 (1985), pp. 19-34. Zbl0592.65073MR808322
  8. [8] P. G. CIARLET, The finite element method for elliptic problems, North Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  9. [9] J. Jr. DOUGLAS, J. E. ROBERTS, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44, 169 (1985), pp. 39-52. Zbl0624.65109MR771029
  10. [10] R. G. DURÁN, Error analysis in Lp, 1 ≤ p ≤ ∞ for mixed finite element methods for linear and quasi-linear elliptic problems, R.A.I.R.O, Model. Math Anal. Numér., 22, 3 (1988), pp. 371-387. Zbl0698.65060
  11. [11] L. GASTALDI, R. H. NOCHETTO, Optimal L∞-error estimates for nonconforming and mixed finite element methods of the lowest order, Numer. Math., 50, 3 (1987), pp. 587-611. Zbl0597.65080MR880337
  12. [12] L. GASTALDI, R. H. NOCHETTO, On L∞-accuracy of mixed finite element methods for second order elliptic problems, Mat. Api. Comput., 7 (1988), pp. 13-39. Zbl0677.65104MR965675
  13. [13] C. JOHNSON, V. THOMEE, Error estimates for some mixed finite element methods for parabolic type problems, R.A.I.R.O. Anal. Numér., 15, 1 (1981), pp. 41-78. Zbl0476.65074MR610597
  14. [14] F. NATTERER, Über die punktweise konvergenz finiter Elemente, Numer. Math,, 25, 1 (1975), pp. 67-78. Zbl0331.65073MR474884
  15. [15] J. NEDELEC, Mixed finite elements in R3, Numer. Math., 35 (1980), pp. 315-341. Zbl0419.65069MR592160
  16. [16] J. A. NITSCHE, L∞-convergence of finite element approximations Mathematical aspects of the Finite Element Methods, Lectures Notes in Math. N. 606, Springer-Verlag, New York, 1977, pp. 261-274. Zbl0362.65088MR488848
  17. [17] J. A. NITSCHE, Schauder estimates for finite element approximations on second order elliptic boundary value problems. Proceedings of the Special Year in Numerical Analysis, Lectures Notes N. 20, Univ. of Maryland, Babuska, Liu, Osborn eds., 1981, pp. 290-343. 
  18. [18] R. RANNACHER, Zur L∞-Konvergenz linearer finiter elemente beim Dirichlet- Problem, Math. Z., 149 (1976), pp. 69-77. Zbl0321.65055MR488859
  19. [19] R. RANNACHER, R. SCOTT, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp., 38, 158 (1982), pp. 437-445. Zbl0483.65007MR645661
  20. [20] P. A. RAVIART, J. M. THOMAS, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Methods, Lecture Notes in Math. N. 606, Springer-Verlag, New York, 1977, pp. 292-315. Zbl0362.65089MR483555
  21. [21] R. SCHOLZ, L∞-convergence of saddle-point approximations for second order problems, R.A.I.R.O. Anal. Numér., 11, 2 (1977), pp. 209-216. Zbl0356.35026MR448942
  22. [22] R. SCHOLZ, Optimal L∞-estimates for a mixed finite element method for elliptic and parabolic problems, Calcolo, 20 (1983), pp. 355-377. Zbl0571.65092MR761790
  23. [23] R. SCHOLZ, A remark on the rate of convergence for a mixed finite element method for second order problems, Numer. Funct. Anal. Optim, 4 (3) (1981-1982), pp. 269-277. Zbl0481.65066MR665363

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.