Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations
Lucia Gastaldi; Ricardo H. Nochetto
- Volume: 23, Issue: 1, page 103-128
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGastaldi, Lucia, and Nochetto, Ricardo H.. "Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.1 (1989): 103-128. <http://eudml.org/doc/193547>.
@article{Gastaldi1989,
author = {Gastaldi, Lucia, Nochetto, Ricardo H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {maximum norm error estimates; superconvergence; mixed finite elements; sharp error bounds; rates of convergence; Nitsche's method; weighted Sobolev norms; optimal error bounds},
language = {eng},
number = {1},
pages = {103-128},
publisher = {Dunod},
title = {Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations},
url = {http://eudml.org/doc/193547},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Gastaldi, Lucia
AU - Nochetto, Ricardo H.
TI - Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 1
SP - 103
EP - 128
LA - eng
KW - maximum norm error estimates; superconvergence; mixed finite elements; sharp error bounds; rates of convergence; Nitsche's method; weighted Sobolev norms; optimal error bounds
UR - http://eudml.org/doc/193547
ER -
References
top- [1] S. AGMON, A. DOUGLIS, L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math., 12 (1959), pp. 623-727. Zbl0093.10401MR125307
- [2] D. N. ARNOLD, F. BREZZI, Mixed and nonconforming finite element methods : implementation, post-processing and error estimates, R.A.I.R.O. Model. Math Anal. Numér, 19, 1 (1985), pp. 7-35. Zbl0567.65078MR813687
- [3] F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O. Anal. Numér., 2 (1974), pp. 129-151. Zbl0338.90047MR365287
- [4] F. BREZZI, J. Jr. DOUGLAS, R. DURÁN, M. FORTIN, Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 51 (1987) pp. 237-250. Zbl0631.65107MR890035
- [5] F. BREZZI, J. Jr. DOUGLAS, M. FORTIN, L. D. MARINI, Efficient rectangular mixed finite elements in two and three space variables, R.A.I.R.O. Model. Math. Anal. Numér., 21, 4 (1987), pp. 581-604. Zbl0689.65065MR921828
- [6] F. BREZZI, J. Jr. DOUGLAS, L. D. MARINI, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), pp. 217-235. Zbl0599.65072MR799685
- [7] F. BREZZI, J. Jr. DOUGLAS, L. D. MARINI, Variable degree mixed methods for second order elliptic problems, Mat. Apl. Comput., 4 (1985), pp. 19-34. Zbl0592.65073MR808322
- [8] P. G. CIARLET, The finite element method for elliptic problems, North Holland, Amsterdam, 1978. Zbl0383.65058MR520174
- [9] J. Jr. DOUGLAS, J. E. ROBERTS, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44, 169 (1985), pp. 39-52. Zbl0624.65109MR771029
- [10] R. G. DURÁN, Error analysis in Lp, 1 ≤ p ≤ ∞ for mixed finite element methods for linear and quasi-linear elliptic problems, R.A.I.R.O, Model. Math Anal. Numér., 22, 3 (1988), pp. 371-387. Zbl0698.65060
- [11] L. GASTALDI, R. H. NOCHETTO, Optimal L∞-error estimates for nonconforming and mixed finite element methods of the lowest order, Numer. Math., 50, 3 (1987), pp. 587-611. Zbl0597.65080MR880337
- [12] L. GASTALDI, R. H. NOCHETTO, On L∞-accuracy of mixed finite element methods for second order elliptic problems, Mat. Api. Comput., 7 (1988), pp. 13-39. Zbl0677.65104MR965675
- [13] C. JOHNSON, V. THOMEE, Error estimates for some mixed finite element methods for parabolic type problems, R.A.I.R.O. Anal. Numér., 15, 1 (1981), pp. 41-78. Zbl0476.65074MR610597
- [14] F. NATTERER, Über die punktweise konvergenz finiter Elemente, Numer. Math,, 25, 1 (1975), pp. 67-78. Zbl0331.65073MR474884
- [15] J. NEDELEC, Mixed finite elements in R3, Numer. Math., 35 (1980), pp. 315-341. Zbl0419.65069MR592160
- [16] J. A. NITSCHE, L∞-convergence of finite element approximations Mathematical aspects of the Finite Element Methods, Lectures Notes in Math. N. 606, Springer-Verlag, New York, 1977, pp. 261-274. Zbl0362.65088MR488848
- [17] J. A. NITSCHE, Schauder estimates for finite element approximations on second order elliptic boundary value problems. Proceedings of the Special Year in Numerical Analysis, Lectures Notes N. 20, Univ. of Maryland, Babuska, Liu, Osborn eds., 1981, pp. 290-343.
- [18] R. RANNACHER, Zur L∞-Konvergenz linearer finiter elemente beim Dirichlet- Problem, Math. Z., 149 (1976), pp. 69-77. Zbl0321.65055MR488859
- [19] R. RANNACHER, R. SCOTT, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp., 38, 158 (1982), pp. 437-445. Zbl0483.65007MR645661
- [20] P. A. RAVIART, J. M. THOMAS, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Methods, Lecture Notes in Math. N. 606, Springer-Verlag, New York, 1977, pp. 292-315. Zbl0362.65089MR483555
- [21] R. SCHOLZ, L∞-convergence of saddle-point approximations for second order problems, R.A.I.R.O. Anal. Numér., 11, 2 (1977), pp. 209-216. Zbl0356.35026MR448942
- [22] R. SCHOLZ, Optimal L∞-estimates for a mixed finite element method for elliptic and parabolic problems, Calcolo, 20 (1983), pp. 355-377. Zbl0571.65092MR761790
- [23] R. SCHOLZ, A remark on the rate of convergence for a mixed finite element method for second order problems, Numer. Funct. Anal. Optim, 4 (3) (1981-1982), pp. 269-277. Zbl0481.65066MR665363
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.