Error estimates and step-size control for the approximate solution of a first order evolution equation
- Volume: 25, Issue: 1, page 111-128
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLippold, Günter. "Error estimates and step-size control for the approximate solution of a first order evolution equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.1 (1991): 111-128. <http://eudml.org/doc/193616>.
@article{Lippold1991,
author = {Lippold, Günter},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {step-size control; first order evolution equation; backward Euler method; nonlinear monotone operator; Hilbert space; error bounds},
language = {eng},
number = {1},
pages = {111-128},
publisher = {Dunod},
title = {Error estimates and step-size control for the approximate solution of a first order evolution equation},
url = {http://eudml.org/doc/193616},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Lippold, Günter
TI - Error estimates and step-size control for the approximate solution of a first order evolution equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 1
SP - 111
EP - 128
LA - eng
KW - step-size control; first order evolution equation; backward Euler method; nonlinear monotone operator; Hilbert space; error bounds
UR - http://eudml.org/doc/193616
ER -
References
top- [1] O. AXELSSON, Error estimates over infinite intervals of some discretizations of evolution equations, BIT 24 (1984), 413-429 Zbl0573.65038MR764815
- [2] I. BABUŠKA and W. C. RHEINBOLDT, Error estimates for adaptive finite element computations, SIAM J Numer Anal 75 (1978), 736-754 Zbl0398.65069MR483395
- [3] M. BIETERMANN and I. BABUŠKA, An adaptive method of lines with error control for parabolic equations of the reaction-diffusion type, J Comp Phys 63 (1986), 33-66 Zbl0596.65084MR832563
- [4] K. ERICSSON, C. JOHNSON and V. THOMEE, Time discretization of par abolie problems by the discontinuons Galerkin method, M2AN 19 (1985), 611-643 Zbl0589.65070MR826227
- [5] H. GAJEWSKI, K. ROGER and K. ZACHARIAS, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 Zbl0289.47029MR636412
- [6] K. GROGER, Discrete-time Galerkin methods for nonlinear evolution equations, Math Nachr 84 (1978), 247-275 Zbl0408.65071MR518126
- [7] C. JOHNSON, Y.-Y. NIE and V. THOMEE, An a posteriori error estimate for a backward Euler discretization of a parabolic problem, SIAM J Numer Anal, 27 (1990), 277-291 Zbl0701.65063MR1043607
- [8] J. KAČUR, Method of Rothe in evolution equations, Teubner Leipzig, 1985 Zbl0582.65084MR834176
- [9] J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes et applications I, Dunod, Paris, 1968 Zbl0165.10801
- [10] G. LIPPOLD, Adaptive approximation, ZAMM 67 (1987), 453-465 Zbl0652.65062MR919399
- [11] M. LUSKIN and R. RANNACHER, On the smoothing property of the Galerkin method for par abolic equations, SIAM J Numer Anal 19 (1981), 93-113 Zbl0483.65064MR646596
- [12] J. NEČAS, Application of Rothe's method to abstract parabohe equations, Czech Math J 24 (1974), 496-500 Zbl0311.35059MR348571
- [13] P. A. RAVIART, Sur l'approximation de certaines équations d'évolution linéaires et non linéaires, J Math Pures Appl 46 (1967), 11-107, 109-183 Zbl0198.49901
- [14] Th. REIHER, An adaptive method for linear parabolic partial differential equations, ZAMM 67 (1987), 557-565 Zbl0637.65118MR922260
- [15] E. ROTHE, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben, Math. Ann. 102 (1930), 650-670. MR1512599JFM56.1076.02
- [16] J. M. SANZ-SERNA and G. VERWER, Stability and convergence in the PDE/stiff ODE interphase, Report NM-R8619, Centre for Mathematics and Computer Science Amsterdam, 1986. Zbl0671.65078
- [17] V. THOMÉE and L. B. WAHLBIN, On Galerkin methods in semilinear parabolic problems, SIAM J. Numer. Anal. 12 (1975), 378-389. Zbl0307.35007MR395269
- [18] M. F. WHEELER, An H-1 Galerkin method for a parabolic problem in a single space variable, SIAM J. Numer. Anal. 12 (1975), 803-817. Zbl0331.65075MR413556
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.