Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems
Miloslav Feistauer; Jaroslav Hájek; Karel Švadlenka
Applications of Mathematics (2007)
- Volume: 52, Issue: 3, page 197-233
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFeistauer, Miloslav, Hájek, Jaroslav, and Švadlenka, Karel. "Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems." Applications of Mathematics 52.3 (2007): 197-233. <http://eudml.org/doc/33285>.
@article{Feistauer2007,
abstract = {The paper presents the theory of the discontinuous Galerkin finite element method for the space-time discretization of a linear nonstationary convection-diffusion-reaction initial-boundary value problem. The discontinuous Galerkin method is applied separately in space and time using, in general, different nonconforming space grids on different time levels and different polynomial degrees $p$ and $q$ in space and time discretization, respectively. In the space discretization the nonsymmetric interior and boundary penalty approximation of diffusion terms is used. The paper is concerned with the proof of error estimates in “$L^2(L^2)$”- and “$ \sqrt\{ \varepsilon \} L^2(H^1) $”-norms, where $\varepsilon \ge 0$ is the diffusion coefficient. Using special interpolation theorems for the space as well as time discretization, we find that under some assumptions on the shape regularity of the meshes and a certain regularity of the exact solution, the errors are of order $ O(h^p+\tau ^q)$. The estimates hold true even in the hyperbolic case when $ \varepsilon = 0$.},
author = {Feistauer, Miloslav, Hájek, Jaroslav, Švadlenka, Karel},
journal = {Applications of Mathematics},
keywords = {nonstationary convection-diffusion-reaction equation; space-time discontinuous Galerkin finite element discretization; nonsymmetric treatment of diffusion terms; error estimates; error estimates; discontinuous Galerkin finite element method; linear nonstationary convection-diffusion-reaction initial-boundary value problem; time discretization; space discretization},
language = {eng},
number = {3},
pages = {197-233},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems},
url = {http://eudml.org/doc/33285},
volume = {52},
year = {2007},
}
TY - JOUR
AU - Feistauer, Miloslav
AU - Hájek, Jaroslav
AU - Švadlenka, Karel
TI - Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems
JO - Applications of Mathematics
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 3
SP - 197
EP - 233
AB - The paper presents the theory of the discontinuous Galerkin finite element method for the space-time discretization of a linear nonstationary convection-diffusion-reaction initial-boundary value problem. The discontinuous Galerkin method is applied separately in space and time using, in general, different nonconforming space grids on different time levels and different polynomial degrees $p$ and $q$ in space and time discretization, respectively. In the space discretization the nonsymmetric interior and boundary penalty approximation of diffusion terms is used. The paper is concerned with the proof of error estimates in “$L^2(L^2)$”- and “$ \sqrt{ \varepsilon } L^2(H^1) $”-norms, where $\varepsilon \ge 0$ is the diffusion coefficient. Using special interpolation theorems for the space as well as time discretization, we find that under some assumptions on the shape regularity of the meshes and a certain regularity of the exact solution, the errors are of order $ O(h^p+\tau ^q)$. The estimates hold true even in the hyperbolic case when $ \varepsilon = 0$.
LA - eng
KW - nonstationary convection-diffusion-reaction equation; space-time discontinuous Galerkin finite element discretization; nonsymmetric treatment of diffusion terms; error estimates; error estimates; discontinuous Galerkin finite element method; linear nonstationary convection-diffusion-reaction initial-boundary value problem; time discretization; space discretization
UR - http://eudml.org/doc/33285
ER -
References
top- 10.1137/0719052, SIAM J. Numer. Anal. 19 (1982), 742–760. (1982) Zbl0482.65060MR0664882DOI10.1137/0719052
- Discontinuos Galerkin methods for elliptic problems, In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes Comput. Sci. Eng. 11, B. Cockburn et al. (eds.), Springer-Verlag, Berlin, 2000, pp. 89–101. (2000) MR1842165
- 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749–1779. (2002) MR1885715DOI10.1137/S0036142901384162
- 10.1016/S0898-1221(99)00117-0, Comput. Math. Appl. 37 (1999), 103–122. (1999) MR1688050DOI10.1016/S0898-1221(99)00117-0
- 10.1006/jcph.1996.5572, J. Comput. Phys. 131 (1997), 267–279. (1997) MR1433934DOI10.1006/jcph.1996.5572
- 10.1006/jcph.1997.5454, J. Comput. Phys. 138 (1997), 251–285. (1997) MR1607481DOI10.1006/jcph.1997.5454
- 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C, Int. J. Numer. Methods Fluids 31 (1999), 79–95. (1999) MR1714511DOI10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C
- The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
- Discontinuous Galerkin methods for convection-dominated problems, In: High-Order Methods for Computational Physics. Lect. Notes Comput. Sci. Eng. 9, T. J. Barth, H. Deconinck (eds.), Springer-Verlag, Berlin, 1999, pp. 69–224. (1999) Zbl0937.76049MR1712278
- Discontinuous Galerkin Methods. Lect. Notes Comput. Sci. Eng. 11, B. Cockburn, G. E. Karniadakis, and C.-W. Shu (eds.), Springer-Verlag, Berlin, 2000. (2000)
- TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II. General framework, Math. Comp. 52 (1989), 411–435. (1989) MR0983311
- 10.1145/305658.287640, ACM Trans. Math. Softw. 25 (1999), 1–20. (1999) MR1697461DOI10.1145/305658.287640
- On the discontinuous Galerkin method for the numerical solution of compressible high-speed flow, In: Numerical Mathematics and Advanced Applications, ENUMATH 2001, F. Brezzi, A. Buffa, S. Corsaro, and A. Murli (eds.), Springer-Verlag, Berlin, 2003, pp. 65–83. (2003) MR2360708
- 10.1081/NFA-200067298, Numer. Funct. Anal. Optimization 26 (2005), 349–383. (2005) MR2153838DOI10.1081/NFA-200067298
- 10.1016/j.jcp.2004.01.023, J. Comput. Phys. 198 (2004), 727–746. (2004) MR2062915DOI10.1016/j.jcp.2004.01.023
- Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes, Preprint No. MATH-knm-2005/1, Charles University Prague, School of Mathematics, 2005. (2005) MR2325393
- On a semi-implicit discontinuous Galerkin FEM for the nonstationary compressible Euler equations, In: Hyperbolic Problems: Theory, Numerics and Applications. I. Proc. 10th International Conference Osaka, September 2004, F. Asakura, H. Aiso, S. Kawashima, A. Matsumura, S. Nishibata, and K. Nishihara (eds.), Yokohama Publishers, Yokohama, 2006, pp. 391–398. (2006) MR2667262
- 10.1007/s100920200000, Calcolo 39 (2002), 1–40. (2002) MR1901200DOI10.1007/s100920200000
- 10.1016/S0378-4754(02)00087-3, Math. Comput. Simul. 61 (2003), 333–346. (2003) MR1984135DOI10.1016/S0378-4754(02)00087-3
- 10.1016/j.cma.2004.07.017, Comput. Methods Appl. Mech. Eng. 194 (2005), 2709–2733. (2005) MR2136396DOI10.1016/j.cma.2004.07.017
- Interior penalty procedures for elliptic and parabolic Galerkin methods, In: Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975). Lect. Notes Phys., Vol. 58, Springer-Verlag, Berlin, 1976, pp. 207–216. (1976) MR0440955
- Computational Differential Equations, Cambridge University Press, Cambridge, 1996. (1996) MR1414897
- 10.1051/m2an/1985190406111, RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 611–643. (1985) MR0826227DOI10.1051/m2an/1985190406111
- Solution of compressible flow with all Mach numbers, In: European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006, P. Wesseling, E. Onate, and J. Périaux (eds.), TU Delft, The Netherlands, 2006, published electronically. (2006)
- Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems, J. Numer. Math. 12 (2004), 97–117. (2004) MR2062581
- Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, Technical Report 2001-42 (SFB 359), IWR Heidelberg. MR1947780
- www.freefem.org/ff++, .
- 10.1137/S0036142900374111, SIAM J. Numer. Anal. 39 (2002), 2133–2163. (2002) MR1897953DOI10.1137/S0036142900374111
- 10.1142/S021820259500022X, Math. Models Methods Appl. Sci. 5 (1995), 367–386. (1995) MR1330139DOI10.1142/S021820259500022X
- 10.1090/S0025-5718-1986-0815828-4, Math. Comp. 46 (1986), 1–26. (1986) MR0815828DOI10.1090/S0025-5718-1986-0815828-4
- Function Spaces, Academia, Praha, 1977. (1977) MR0482102
- On a finite element method for solving the neutron transport equation, In: Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor (ed.), Academic Press, , 1974, pp. 89–145. (1974) MR0658142
- Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969. (1969) Zbl0189.40603MR0259693
- www.netlib.org/minpack, University of Chicago, Operator of Argonne Laboratory (1999). (1999)
- 10.1006/jcph.1998.6032, J. Comput. Phys. 146 (1998), 491–519. (1998) MR1654911DOI10.1006/jcph.1998.6032
- Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479. Los Alamos Scientific Laboratory, 1973.
- The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. (1982) Zbl0522.65059MR0689712
- A discontinuous Galerkin method applied to nonlinear parabolic equations, In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes in Comput. Sci. Eng. 11, B. Cockburn et al. (eds.), Springer-Verlag, Berlin, 2000, pp. 231–244. (2000) MR1842177
- 10.1090/conm/295/05032, Contemp. Math. 295 (2002), 421–432. (2002) MR1911967DOI10.1090/conm/295/05032
- 10.1023/A:1011591328604, Comput. Geosci. 3 (1999), 337–360. (1999) MR1750076DOI10.1023/A:1011591328604
- 10.1137/S003614290037174X, SIAM J. Numer. Anal. 39 (2001), 902–931. (2001) MR1860450DOI10.1137/S003614290037174X
- Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems, Springer-Verlag, Berlin, 1996. (1996) MR1477665
- -DGFEM for Parabolic Evolution Problems, Applications to Diffusion and Viscous Incompressible Fluid Flow. PhD. Dissertation ETH No. 13041, ETH, Zürich, 1999. (1999)
- 10.1007/s100920070002, Calcolo 37 (2000), 207–232. (2000) MR1812787DOI10.1007/s100920070002
- 10.1007/s10915-004-4148-2, J. Sci. Comput. 22–23 (2005), 501–530. (2005) MR2142207DOI10.1007/s10915-004-4148-2
- 10.1137/S003614290241708X, SIAM J. Numer. Anal. 43 (2005), 195–219. (2005) MR2177141DOI10.1137/S003614290241708X
- 10.1016/j.apnum.2004.08.035, Appl. Numer. Math. 52 (2005), 273–298. (2005) MR2116915DOI10.1016/j.apnum.2004.08.035
- 10.1006/jcph.2002.7185, J. Comput. Phys. 182 (2002), 546–585. (2002) MR1941852DOI10.1006/jcph.2002.7185
- 10.1016/S0045-7825(01)00258-4, Comput. Methods Appl. Mech. Eng. 190 (2001), 6685–6708. (2001) MR1863353DOI10.1016/S0045-7825(01)00258-4
- 10.1137/0715010, SIAM J. Numer. Anal. 15 (1978), 152–161. (1978) Zbl0384.65058MR0471383DOI10.1137/0715010
Citations in EuDML Documents
top- Monika Balázsová, Miloslav Feistauer, On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
- Martin Balazovjech, Miloslav Feistauer, Jaromír Horáček, Martin Hadrava, Adam Kosík, Space-time discontinuous Galerkin method for the solution of fluid-structure interaction
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.