Numerical approximation of the Preisach model for hysteresis

C. Verdi; A. Visintin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 2, page 335-356
  • ISSN: 0764-583X

How to cite

top

Verdi, C., and Visintin, A.. "Numerical approximation of the Preisach model for hysteresis." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.2 (1989): 335-356. <http://eudml.org/doc/193562>.

@article{Verdi1989,
author = {Verdi, C., Visintin, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Preisach model; initial and boundary value problem; weak solution; finite element space approximations; time discretizations; backward; differences; linearization; stability; Fortran implementation; continuous hysteresis operator},
language = {eng},
number = {2},
pages = {335-356},
publisher = {Dunod},
title = {Numerical approximation of the Preisach model for hysteresis},
url = {http://eudml.org/doc/193562},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Verdi, C.
AU - Visintin, A.
TI - Numerical approximation of the Preisach model for hysteresis
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 2
SP - 335
EP - 356
LA - eng
KW - Preisach model; initial and boundary value problem; weak solution; finite element space approximations; time discretizations; backward; differences; linearization; stability; Fortran implementation; continuous hysteresis operator
UR - http://eudml.org/doc/193562
ER -

References

top
  1. [1] M. BROKATE & A. VISINTIN, Properties of the Preisach model for hysteresis, Preprint (1988). Zbl0682.47034MR1022792
  2. [2] P. G. CIARLET, The finite element method for elliptic problems, North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
  3. [3] K.-H. HOFFMANN, J. SPREKELS & A. VISINTIN, Identification of hysteresis loops, J. Comp. Phys., 78 (1988), 215-230. Zbl0659.65125MR959083
  4. [4] M. A. KRASNOSEL SKII & A. V. POKROVSKII, Systems with hysteresis (Russian), Nauka, Moscow (1983), English translation, Springer-Verlag, Berlin (1989). Zbl0665.47038MR987431
  5. [5] E. MAGENES, R. H. NOCHETTO & C. VERDI, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems, RAIRO Model Math. Anal. Numer., 21 (1987), 655-678. Zbl0635.65123MR921832
  6. [6] J. M. ORTEGA & C. RHEIBOLDT, Iterative solution of non-linear equations in several variables, Academic Press, New York (1970). Zbl0241.65046
  7. [7] E. PREISACH, Uber die magnetische Nachwirkung, Z. Phisik, 94 (1935), 277-302. 
  8. [8] C. VERDI & A. VISINTIN, Numerical approximation of hysteresis problems, I M A J Numer Anal, 5 (1985), 447-463. Zbl0608.65082MR816068
  9. [9] C. VERDI & A. VISINTIN, Error estimates for a semi-explicit numerical scheme for Stefan-type problems, Numer. Math., 52 (1988), 165-185. Zbl0617.65125MR923709
  10. [10] A. VISINTIN, On the Preisach model for hysteresis, Non linear Anal, 9 (1984), 977-996. Zbl0563.35007MR760191
  11. [11] A. VISINTIN, Mathematical models of hysteresis, in Topics in Nonsmooth Analysis (J. J. Moreau, P. D. Panagiotopoulos & G Strang, Eds ), Birkhauser, Basel (1988). Zbl0656.73043MR957094

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.