Error estimates for Euler forward scheme related to two-phase Stefan problems

G. Amiez; P.-A. Gremaud

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 2, page 365-383
  • ISSN: 0764-583X

How to cite

top

Amiez, G., and Gremaud, P.-A.. "Error estimates for Euler forward scheme related to two-phase Stefan problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.2 (1992): 365-383. <http://eudml.org/doc/193668>.

@article{Amiez1992,
author = {Amiez, G., Gremaud, P.-A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mass-lumping procedure; two-phase Stefan problems; explicit time discretization; stability; convergence; enthalpy; Euler forward scheme; error estimates; nonlinear parabolic problem; linear finite elements},
language = {eng},
number = {2},
pages = {365-383},
publisher = {Dunod},
title = {Error estimates for Euler forward scheme related to two-phase Stefan problems},
url = {http://eudml.org/doc/193668},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Amiez, G.
AU - Gremaud, P.-A.
TI - Error estimates for Euler forward scheme related to two-phase Stefan problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 2
SP - 365
EP - 383
LA - eng
KW - mass-lumping procedure; two-phase Stefan problems; explicit time discretization; stability; convergence; enthalpy; Euler forward scheme; error estimates; nonlinear parabolic problem; linear finite elements
UR - http://eudml.org/doc/193668
ER -

References

top
  1. [1] G. AMIEZ, P. A. GREMAUD, On a numerical approach to Stefan-like problems, Numer. Math., 59 (1991), 71-89. Zbl0731.65107MR1103754
  2. [2] A. E. BERGER, H. BREZIS, J. W. C. ROGERS, A numerical method for solving the problem ut - Δƒ(u) = 0, R.A.I.R.O. Model. Math. Anal. Numer. 13, 4 (1979), 297-312. Zbl0426.65052MR555381
  3. [3] H. BREZIS, Analyse fonctionnelle, théorie et applications, Masson, Paris, 1983. Zbl0511.46001MR697382
  4. [4] P. G. CIARLET, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  5. [5] P. G. CIARLET, P. A. RAVIART, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rational. Mech. Anal., 46 (1972), 177-199. Zbl0243.41004MR336957
  6. [6] J. F. CIAVALDINI, Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis, SIAM, J. Numer. Anal., 12, 3 (1975), 464-488. Zbl0272.65101MR391741
  7. [7] I. I. DANILYUK, On the Stefan problem, Russian Math. Surveys, 40, 5 (1985),157-223. Zbl0604.35080MR810813
  8. [8] J. J. DROUX, Three-dimensional numerical simulation of solidification by an improved explicit scheme, to appear in Comput. Methods Appl. Mech. Engrg. Zbl0825.73928
  9. [9] C. M. ELLIOTT, Error analysis of the enthalpy method for the Stefan problem, IMA J. Numer. Anal., 7 (1987), 61-71. Zbl0638.65088MR967835
  10. [10] A. FRIEDMAN, The Stefan problem in several space variables, Trans. Amer. Math. Soc, 133 (1968), 51-87. Zbl0162.41903MR227625
  11. [11] W. GENTZSH, Numerical solution oflinear and nonlinear parabolic differential equations by a time discretization of third order accuracy, Proceeding of the Third GAMM, Conference on Numerical Methods in Fluid Mechanics, Notes on Numerical Fluid Mechanics, vol. 2, Vieweg & Sohn, Braunschweig, 109-118, 1979. 
  12. [12] J. W. JEROME, M. E. ROSE, Error estimates for the multidimensional two-phase Stefan problem, Math, of Comp., 39, 160 (1982), 377-414. Zbl0505.65060MR669635
  13. [13] S. KAMENOMOSTSKAYA, On the Stefan problem, Mat. Sb., 53 (1961), 489-514. Zbl0102.09301
  14. [14] O. LADYZENSKAYA, V. SOLONNIKOV, N. URAL'CEVA, Linear and quasi-linear equations of parabolic type, Trans. Math. Monographs, A.M.S., 1968. Zbl0174.15403
  15. [15] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  16. [16] E. MAGENES, R. H. NOCHETTO, C. VERDI, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems, R.A.I.R.O. Model. Math. Anal. Numér., 21, 4 (1987), 655-678. Zbl0635.65123MR921832
  17. [17] R. H. NOCHETTO, Error estimates for two-phase Stefan problems in several space variables I : Linear boundary conditions, Calcolo, 22 (1985), 457-499. Zbl0606.65084MR859087
  18. [18] R. H. NOCHETTO, Error estimates for two-phase Stefan problems in several space variables II : Nonlinear flux conditions, Calcolo, 22 (1985), 501-534. Zbl0606.65085MR859088
  19. [19] R. H. NOCHETTO, Error estimates for multidimensional singular parabolic problems, Japan J. Appl. Math., 4 (1987), 111-138. Zbl0657.65132MR899207
  20. [20] R. H. NOCHETTO, A class of non degenerate two-phase Stefan problems in several space variables, Commun, in Partial Diff. Equ., 12, 1 (1987), 21-45. Zbl0624.35085MR869101
  21. [21] R. H. NOCHETTO, Numerical methods for free boundary problems, Free Boundary Problems : Theory and Applications, K. H. Hoffmann and J. Sprekels (eds.), Pitman, 1988, to appear. 
  22. [22] R. H. NOCHETTO, C. VERDI, Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal., 25, 4 (1988), 784-814. Zbl0655.65131MR954786
  23. [23] R. H. NOCHETTO, C. VERDI, An efficient linear scheme to approximate parabolic free boundary problems : error estimates and implementation, Math.Comp., 51 (1988), 27-53. Zbl0657.65131MR942142
  24. [24] R. H. NOCHETTO, C. VERDI, The combined use of a nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems, Numer. Funct. Anal. Optim., 9 (1987-88), 1177-1192. Zbl0629.35116MR936337
  25. [25] P. A. RAVIART, The use of numerical integration infinite element methods for solving parabolic equations, in Topics in Numerical Analysis (J. Miller éd.), Academic Press, London (1973), 233-264. Zbl0293.65086MR345428
  26. [26] C. VERDI, Linear algorithms for solving Stefan-like problems, Free Boundary Boundary Problems : Theory and Applications, K. H. Hoffmann and. Sprekels (eds.), Pitman, 1988, to appear. Zbl0721.65079MR1081758

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.