A boundary element procedure for contact problems in plane linear elastostatics

J. Gwinner; E. P. Stephan

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 4, page 457-480
  • ISSN: 0764-583X

How to cite

top

Gwinner, J., and Stephan, E. P.. "A boundary element procedure for contact problems in plane linear elastostatics." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.4 (1993): 457-480. <http://eudml.org/doc/193710>.

@article{Gwinner1993,
author = {Gwinner, J., Stephan, E. P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {variational inequalities; displacement field; traction-contact boundary conditions; convergence; piecewise polynomial boundary element approximations; nonconform approximation schemes},
language = {eng},
number = {4},
pages = {457-480},
publisher = {Dunod},
title = {A boundary element procedure for contact problems in plane linear elastostatics},
url = {http://eudml.org/doc/193710},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Gwinner, J.
AU - Stephan, E. P.
TI - A boundary element procedure for contact problems in plane linear elastostatics
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 4
SP - 457
EP - 480
LA - eng
KW - variational inequalities; displacement field; traction-contact boundary conditions; convergence; piecewise polynomial boundary element approximations; nonconform approximation schemes
UR - http://eudml.org/doc/193710
ER -

References

top
  1. [1] I. BABUŠKA and A. K. Aziz, Survey lectures on the mathematicalformulation ofthe finite element method, in The Mathematical Foundation of the Finite Element Method (A. K. Aziz, ed.) Academic Press, New York, 1972, pp. 3-359. Zbl0268.65052MR421106
  2. [2] M. COSTABEL, Boundary integral operators on Lipschitz domains : Elementary results, SIAM J. Math. Anal. 19, 1988, pp. 613-626. Zbl0644.35037MR937473
  3. [3] R. DAUTRAY and J.L. LIONS, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 4, Integral Equations and Numerical Methods, Springer, Berlin, 1990. Zbl0784.73001MR1081946
  4. [4] G. DUVAUT and J. L. LIONS, Inequalities in Mechanics and Physics, Springer, Berlin, 1976. Zbl0331.35002MR521262
  5. [5] J. ELSCHNER, On spline approximation for a class of integral equations, I : Galerkin and collocation methods with piecewise polynomials, Math. Methods in the Applied Sciences 10, 1988, pp. 543-559. Zbl0662.65112MR965421
  6. [6] H. ENGELS, Numerical Quadrature and Cubature, Academic Press, New York, 1980. Zbl0435.65013MR587486
  7. [7] G. I. ÈSKIN, Boundary Value Problems for Elliptic Pseudodifferential Equations, Translations of Mathematical Monographs, Vol. 52, American Mathematical Society, Providence, 1981. Zbl0458.35002MR623608
  8. [8] G. FICHERA, Boundary value problems of elasticity with unilateral constraints, in Handbuch der Physik - Encyclopedia of Physics, Band VI a/2 Festkörper-mechanikll, Springer, Berlin, 1972, pp. 391-424. 
  9. [9] R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer, New York, 1984. Zbl0536.65054MR737005
  10. [10] R. GLOWINSKI, J. L. LIONS and R. TRÉMOLIÈRES, Numerical Analysis ofVariational Inequalities, North-Holland, Amsterdam, 1981. Zbl0463.65046MR635927
  11. [11] P. GRISVARD, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. Zbl0695.35060MR775683
  12. [12] J. GWINNER, Discretization of semicoercive variational inequalities, Aequationes Mathematicae 42, 1991, pp. 72-79. Zbl0739.65058MR1112184
  13. [13] G. HÄMMERLIN and K. H. HOFFMANN, Numerische Mathematik, Springer, 1989. Zbl0669.65001MR1305149
  14. [14] H. HAN, A direct boundary element method for Signorini problems, Math. Computation 55, 1990, pp.115-128. Zbl0705.65084MR1023048
  15. [15] I. HLAVAČEK, J. HASLINGER, J. NEČAS and J. LOVIŠEK, Solution of Variational Inequalities in Mechanics, Springer, Berlin, 1988. Zbl0654.73019MR952855
  16. [16] I. HLAVAČEK and J. LOVIŠEK, A finite element analysis for the Signorini problem in plane elastostatics, Aplikace Mat. 22, 1977, pp. 215-228. Zbl0369.65031MR446014
  17. [17] G. C. HSIAO, E. P. STEPHAN, W. L. WENDLAND, On the Dirichlet problem in elasticity for a domain exterior to an arc, J. Computational Appl. Mathematics 34, 1991, pp. 1-19. Zbl0742.73026MR1095192
  18. [18] N. KIKUCHI and J. T. ODEN, Contact Problems in Elasticity : a Study ofariational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988. Zbl0685.73002MR961258
  19. [19] V.A. KONDRATIEV and O.A. OLEINIK, On Korn's inequalities, C.R. Acad. Sci. Paris I 308, 1989, pp. 483-487. Zbl0698.35067MR995908
  20. [20] V. D. KUPRADZE, Potential Methods in the Theory of Elasticity, Israël Program for Scientific Translations, Jerusalem, 1965. Zbl0188.56901MR223128
  21. [21] V. D. KUPRADZE, T. G. GEGELIA, M. O. BASHELEISHVILI and T. V. URCHULADZE, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam, 1979. Zbl0406.73001MR530377
  22. [22] N. I. MUSKHELISHVILI, Some Basic Problems of the Mathematical Theory of lasticity, Noordhoff, Groningen, 1963. Zbl0124.17404MR176648
  23. [23] J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Academia, Masson, Prague, Paris, 1967. MR227584
  24. [24] J. C. NEDELEC, Approximation des Équations Intégrales en Mécanique et en Physique, Lecture Notes, Centre Math. Appl., École polytechnique, Palaiseau, France 1977. 
  25. [25] J. C. NEDELEC, Integral equations with non integrable kernels, Integral Equations and Operator Theory 5, 1982, pp. 562-582. Zbl0479.65060MR665149
  26. [26] J. A. NITSCHE, On Korn's second inequality, R.A.I.R.O. Anal. Numér. 15, 1981, pp. 237-248. Zbl0467.35019MR631678
  27. [27] P. D. PANAGIOTOPOULOS, Inequality Problems in Mechanics and Applications, Birkhauser, Basel, 1985. Zbl0579.73014MR896909
  28. [28] P. D. PANAGIOTOPOULOS, Boundary integral « equation » methods for the Signorini-Fichera problem, in Boundary Elements 7, vol. 2, exp. No. 12, 1985, pp. 73-83. Zbl0599.73117MR948223
  29. [29] R. SAUER, Anfangswertprobleme bei partiellen Dijferentialgleichungen, Springer, Berlin, 1952. Zbl0046.31902MR52009
  30. [30] A. SiGNORlNI, Sopra alcune questioni di elastostatica, Atti délia Società Italiana per il Progresso della Scienze, 1933. JFM59.1413.02
  31. [31] W. L. WENDLAND, On some mathematical aspects of boundary elementmethods for elliptic problems, in MAFELAP V (J. R. Whiteman, éd.), Academic Press, New York, 1985, pp. 193-227. Zbl0587.65079MR811035
  32. [32] W. L. WENDLAND and E. P. STEPHAN, A hypersingular boundary integral method for two-dimensional screen and crack problems, Arch. Rational Mech. Anal 112, 1990, pp. 363-390. Zbl0725.73091MR1077265

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.