Existence of regular solutions for a one-dimensional simplified perfect-plastic problem
- Volume: 29, Issue: 1, page 63-96
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAstruc, Thierry. "Existence of regular solutions for a one-dimensional simplified perfect-plastic problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.1 (1995): 63-96. <http://eudml.org/doc/193768>.
@article{Astruc1995,
author = {Astruc, Thierry},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {regularity; stress problem; dual problem; inf-sup equality; necessary and sufficient condition; existence; regular limit loads},
language = {eng},
number = {1},
pages = {63-96},
publisher = {Dunod},
title = {Existence of regular solutions for a one-dimensional simplified perfect-plastic problem},
url = {http://eudml.org/doc/193768},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Astruc, Thierry
TI - Existence of regular solutions for a one-dimensional simplified perfect-plastic problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 1
SP - 63
EP - 96
LA - eng
KW - regularity; stress problem; dual problem; inf-sup equality; necessary and sufficient condition; existence; regular limit loads
UR - http://eudml.org/doc/193768
ER -
References
top- [1] T. ASTRUC, 1994, Thèse. Université de Paris-Sud.
- [2] F. DEMENGEL, 1989, Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity, Archiv for Rational Mechanics and Analysis. Zbl0669.73030MR968458
- [3] F. DEMENGEL and R. TEMAM, 1989, Duality and limit analysis in plasticity.
- [4] F. DEMENGEL and R. TEMAM, 1984, Convex function of a measure and its application, Vol. IV, Indiana journal of Mathematics. Zbl0581.46036
- [5] I. EKELAND and R. TEMAM, 1976, Convex analysis and Variational problems, North-Holland, Amsterdam, New York. Zbl0322.90046MR463994
- [6] GIAQUINTA and MODICA, 1982, Non-linear systems of the type of the stationary Navier-Stokes system, J.-Reine-Angew -Math. Zbl0492.35018MR641818
- [7] R. V. KHON and G. STRANG, 1987, The constrained least gradient problem, Non-classical Continuum Mechanics. Zbl0668.73060
- [8] R. V. KOHN and R. TEMAM, 1983, Dual spaces of stresses and strains with applications to hencky plasticity, Appl. Math. Optimization, 10 1-35. Zbl0532.73039MR701898
- [9] M. A. KRASNOSEL'SKII, 1963, Topological Method in the Theory of non-linear Integral Equations, Pergamon Student Editions, Oxford, London, New York, Paris.
- [10] P. STERNBERG, G. WILLIAMS and W. ZIEMER, 1992, Existence, uniqueness, and regularity for functions of least gradient, J.-Reine-Angew.-Math. Zbl0756.49021MR1172906
- [11] P. SUQUET, 1980, Existence and regularity of solutions for plasticity problems, Variational Methods in Solid Mechanics.
- [12] R. TEMAM, 1985, Problèmes Variationnels en plasticité, Gauthier-Villars, english version.
- [13] R. TEMAM and G. STRANG, 1980, Functions of bounded deformations, ARMA, 75, 7-21. Zbl0472.73031MR592100
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.