Existence of regular solutions for a one-dimensional simplified perfect-plastic problem

Thierry Astruc

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 1, page 63-96
  • ISSN: 0764-583X

How to cite

top

Astruc, Thierry. "Existence of regular solutions for a one-dimensional simplified perfect-plastic problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.1 (1995): 63-96. <http://eudml.org/doc/193768>.

@article{Astruc1995,
author = {Astruc, Thierry},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {regularity; stress problem; dual problem; inf-sup equality; necessary and sufficient condition; existence; regular limit loads},
language = {eng},
number = {1},
pages = {63-96},
publisher = {Dunod},
title = {Existence of regular solutions for a one-dimensional simplified perfect-plastic problem},
url = {http://eudml.org/doc/193768},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Astruc, Thierry
TI - Existence of regular solutions for a one-dimensional simplified perfect-plastic problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 1
SP - 63
EP - 96
LA - eng
KW - regularity; stress problem; dual problem; inf-sup equality; necessary and sufficient condition; existence; regular limit loads
UR - http://eudml.org/doc/193768
ER -

References

top
  1. [1] T. ASTRUC, 1994, Thèse. Université de Paris-Sud. 
  2. [2] F. DEMENGEL, 1989, Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity, Archiv for Rational Mechanics and Analysis. Zbl0669.73030MR968458
  3. [3] F. DEMENGEL and R. TEMAM, 1989, Duality and limit analysis in plasticity. 
  4. [4] F. DEMENGEL and R. TEMAM, 1984, Convex function of a measure and its application, Vol. IV, Indiana journal of Mathematics. Zbl0581.46036
  5. [5] I. EKELAND and R. TEMAM, 1976, Convex analysis and Variational problems, North-Holland, Amsterdam, New York. Zbl0322.90046MR463994
  6. [6] GIAQUINTA and MODICA, 1982, Non-linear systems of the type of the stationary Navier-Stokes system, J.-Reine-Angew -Math. Zbl0492.35018MR641818
  7. [7] R. V. KHON and G. STRANG, 1987, The constrained least gradient problem, Non-classical Continuum Mechanics. Zbl0668.73060
  8. [8] R. V. KOHN and R. TEMAM, 1983, Dual spaces of stresses and strains with applications to hencky plasticity, Appl. Math. Optimization, 10 1-35. Zbl0532.73039MR701898
  9. [9] M. A. KRASNOSEL'SKII, 1963, Topological Method in the Theory of non-linear Integral Equations, Pergamon Student Editions, Oxford, London, New York, Paris. 
  10. [10] P. STERNBERG, G. WILLIAMS and W. ZIEMER, 1992, Existence, uniqueness, and regularity for functions of least gradient, J.-Reine-Angew.-Math. Zbl0756.49021MR1172906
  11. [11] P. SUQUET, 1980, Existence and regularity of solutions for plasticity problems, Variational Methods in Solid Mechanics. 
  12. [12] R. TEMAM, 1985, Problèmes Variationnels en plasticité, Gauthier-Villars, english version. 
  13. [13] R. TEMAM and G. STRANG, 1980, Functions of bounded deformations, ARMA, 75, 7-21. Zbl0472.73031MR592100

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.