Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows
Marco Picasso; Jacques Rappaz[1]
- [1] Ecole Polytechnique Federale Institute of Analysis and Scientific Computing CH-1015 Lausanne Switzerland
- Volume: 35, Issue: 5, page 879-897
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topPicasso, Marco, and Rappaz, Jacques. "Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.5 (2001): 879-897. <http://eudml.org/doc/194078>.
@article{Picasso2001,
abstract = {In this paper, a nonlinear problem corresponding to a simplified Oldroyd-B model without convective terms is considered. Assuming the domain to be a convex polygon, existence of a solution is proved for small relaxation times. Continuous piecewise linear finite elements together with a Galerkin Least Square (GLS) method are studied for solving this problem. Existence and a priori error estimates are established using a Newton-chord fixed point theorem, a posteriori error estimates are also derived. An Elastic Viscous Split Stress (EVSS) scheme related to the GLS method is introduced. Numerical results confirm the theoretical predictions.},
affiliation = {Ecole Polytechnique Federale Institute of Analysis and Scientific Computing CH-1015 Lausanne Switzerland},
author = {Picasso, Marco, Rappaz, Jacques},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {viscoelastic fluids; Galerkin least square finite elements; simplified Oldroyd-B model; convex polygon; existence of solution; small relaxation times; continuous piecewise linear finite elements; Galerkin least square method; a priori error estimates; Newton-chord fixed point theorem; a posteriori error estimates; elastic viscous split stress scheme},
language = {eng},
number = {5},
pages = {879-897},
publisher = {EDP-Sciences},
title = {Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows},
url = {http://eudml.org/doc/194078},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Picasso, Marco
AU - Rappaz, Jacques
TI - Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 5
SP - 879
EP - 897
AB - In this paper, a nonlinear problem corresponding to a simplified Oldroyd-B model without convective terms is considered. Assuming the domain to be a convex polygon, existence of a solution is proved for small relaxation times. Continuous piecewise linear finite elements together with a Galerkin Least Square (GLS) method are studied for solving this problem. Existence and a priori error estimates are established using a Newton-chord fixed point theorem, a posteriori error estimates are also derived. An Elastic Viscous Split Stress (EVSS) scheme related to the GLS method is introduced. Numerical results confirm the theoretical predictions.
LA - eng
KW - viscoelastic fluids; Galerkin least square finite elements; simplified Oldroyd-B model; convex polygon; existence of solution; small relaxation times; continuous piecewise linear finite elements; Galerkin least square method; a priori error estimates; Newton-chord fixed point theorem; a posteriori error estimates; elastic viscous split stress scheme
UR - http://eudml.org/doc/194078
ER -
References
top- [1] F.P.T. Baaijens, Mixed finite element methods for viscoelastic flow analysis: a review. J. Non-Newtonian Fluid Mech. 79 (1998) 361–385. Zbl0957.76024
- [2] I. Babuska, R. Duran, and R. Rodriguez, Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements. SIAM J. Numer. Anal. 29 (1992) 947–964. Zbl0759.65069
- [3] J. Baranger and H. El-Amri, Estimateurs a posteriori d’erreur pour le calcul adaptatif d’écoulements quasi-newtoniens. RAIRO Modél. Math. Anal. Numér. 25 (1991) 31–48. Zbl0712.76068
- [4] J. Baranger and D. Sandri, Finite element approximation of viscoelastic fluid flow. Numer. Math. 63 (1992) 13–27. Zbl0761.76032
- [5] M. Behr, L. Franca, and T. Tezduyar, Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput. Methods Appl. Mech. Engrg. 104 (1993) 31–48. Zbl0771.76033
- [6] J. Bonvin, M. Picasso and R. Stenberg, GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 190 (2001) 3893–3914. Zbl1014.76043
- [7] J.C. Bonvin, Numerical simulation of viscoelastic fluids with mesoscopic models. Ph.D. thesis, Département de Mathématiques, École Polytechnique Fédérale de Lausanne (2000).
- [8] J.C. Bonvin and M. Picasso, Variance reduction methods for CONNFFESSIT-like simulations. J. Non-Newtonian Fluid Mech. 84 (1999) 191–215. Zbl0972.76054
- [9] G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems, in Handbook of Numerical Analysis. Vol. V: Techniques of Scientific Computing (Part 2), P.G. Ciarlet and J.L. Lions, Eds., Elsevier, Amsterdam (1997) 487–637.
- [10] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). Zbl0383.65058MR520174
- [11] P. Clément, Approximation by finite elements using local regularization. RAIRO Anal. Numér. 8 (1975) 77–84. Zbl0368.65008
- [12] M. Fortin, R. Guénette, and R. Pierre, Numerical analysis of the modified EVSS method. Comput. Methods Appl. Mech. Engrg. 143 (1997) 79–95. Zbl0896.76040
- [13] M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 73 (1989) 341–350. Zbl0692.76002
- [14] L. Franca, S. Frey, and T.J.R. Hughes, Stabilized finite element methods: Application to the advective-diffusive model. Comput. Methods Appl. Mech. Engrg. 95 (1992) 253–276. Zbl0759.76040
- [15] L. Franca and R. Stenberg, Error analysis of some GLS methods for elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680–1697. Zbl0759.73055
- [16] X. Gallez, P. Halin, G. Lielens, R. Keunings, and V. Legat, The adaptative Lagrangian particle method for macroscopic and micro-macro computations of time-dependent viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 180 (199) 345–364. Zbl0966.76076
- [17] V. Girault and L.R. Scott, Analysis of a 2nd grade-two fluid model with a tangential boundary condition. J. Math. Pures Appl. 78 (1999) 981–1011. Zbl0961.35116
- [18] P. Grisvard, Elliptic Problems in Non Smooth Domains. Pitman, Boston (1985). Zbl0695.35060
- [19] C. Guillopé and J.-C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15 (1990) 849–869. Zbl0729.76006
- [20] M.A. Hulsen, A.P.G. van Heel, and B.H.A.A. van den Brule, Simulation of viscoelastic clows using Brownian configuration Fields. J. Non-Newtonian Fluid Mech. 70 (1997) 79–101.
- [21] K. Najib and D. Sandri, On a decoupled algorithm for solving a finite element problem for the approximation of viscoelastic fluid flow. Numer. Math. 72 (1995) 223–238. Zbl0838.76044
- [22] L.M. Quinzani, R.C. Armstrong, and R.A. Brown, Birefringence and Laser-Doppler velocimetry studies of viscoelastic flow through a planar contraction. J. Non-Newtonian Fluid Mech. 52 (1994) 1–36.
- [23] M. Renardy, Existence of slow steady flows of viscoelastic fluids with differential constitutive equations. Z. Angew. Math. Mech. 65 (1985) 449–451. Zbl0577.76014
- [24] V. Ruas, Finite element methods for the three-field stokes system. RAIRO Modél. Math. Anal. Numér. 30 (1996) 489–525. Zbl0853.76041
- [25] D. Sandri, Analysis of a three-fields approximation of the stokes problem. RAIRO Modél. Math. Anal. Numér. 27 (1993) 817–841. Zbl0791.76008
- [26] A. Sequeira and M. Baia, A finite element approximation for the steady solution of a second-grade fluid model. J. Comput. Appl. Math. 111 (1999) 281–295. Zbl0957.76033
- [27] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam, New York, Oxford (1984). Zbl0426.35003MR769654
- [28] R. Verfürth, A posteriori error estimators for the Stokes equations. Numer. Math. 55 (1989) 309–325. Zbl0674.65092
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.