A posteriori Error Estimates with Post-Processing for Nonconforming Finite Elements

Friedhelm Schieweck

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 36, Issue: 3, page 489-503
  • ISSN: 0764-583X

Abstract

top
For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is exploited that the nonconforming finite element space contains as a subspace a conforming finite element space of first order. This property is fulfilled for many known nonconforming spaces. We prove local lower and global upper a posteriori error estimates for an enhanced error measure which is the discretization error in the discrete energy norm plus the error of the best representation of the exact solution by a function in the conforming space used for the post-processing. We demonstrate that the idea to use a computed conforming approximation of the nonconforming solution can be applied also to derive an a posteriori error estimate for a linear functional of the solution which represents some quantity of physical interest.

How to cite

top

Schieweck, Friedhelm. "A posteriori Error Estimates with Post-Processing for Nonconforming Finite Elements." ESAIM: Mathematical Modelling and Numerical Analysis 36.3 (2010): 489-503. <http://eudml.org/doc/194113>.

@article{Schieweck2010,
abstract = { For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is exploited that the nonconforming finite element space contains as a subspace a conforming finite element space of first order. This property is fulfilled for many known nonconforming spaces. We prove local lower and global upper a posteriori error estimates for an enhanced error measure which is the discretization error in the discrete energy norm plus the error of the best representation of the exact solution by a function in the conforming space used for the post-processing. We demonstrate that the idea to use a computed conforming approximation of the nonconforming solution can be applied also to derive an a posteriori error estimate for a linear functional of the solution which represents some quantity of physical interest. },
author = {Schieweck, Friedhelm},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {A posteriori error estimates; nonconforming finite elements; post-processing.; a posteriori error estimate; post-processing; second order elliptic equation},
language = {eng},
month = {3},
number = {3},
pages = {489-503},
publisher = {EDP Sciences},
title = {A posteriori Error Estimates with Post-Processing for Nonconforming Finite Elements},
url = {http://eudml.org/doc/194113},
volume = {36},
year = {2010},
}

TY - JOUR
AU - Schieweck, Friedhelm
TI - A posteriori Error Estimates with Post-Processing for Nonconforming Finite Elements
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 3
SP - 489
EP - 503
AB - For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is exploited that the nonconforming finite element space contains as a subspace a conforming finite element space of first order. This property is fulfilled for many known nonconforming spaces. We prove local lower and global upper a posteriori error estimates for an enhanced error measure which is the discretization error in the discrete energy norm plus the error of the best representation of the exact solution by a function in the conforming space used for the post-processing. We demonstrate that the idea to use a computed conforming approximation of the nonconforming solution can be applied also to derive an a posteriori error estimate for a linear functional of the solution which represents some quantity of physical interest.
LA - eng
KW - A posteriori error estimates; nonconforming finite elements; post-processing.; a posteriori error estimate; post-processing; second order elliptic equation
UR - http://eudml.org/doc/194113
ER -

References

top
  1. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg.142 (1997) 1-88.  
  2. L. Angermann, A posteriori error estimates for FEM with violated Galerkin orthogonality. Preprint 27/98, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (1998).  
  3. R. Becker, M. Braack, R. Rannacher and C. Waguet, Fast and reliable solution of the Navier-Stokes equations including chemistry. Comput. Vis. Sci.2 (1999) 107-122.  
  4. R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math.4 (1996) 237-264.  
  5. C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal.35 (1998) 1893-1916.  
  6. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Ser. Comput. Math. Springer-Verlag (1991).  
  7. Z. Cai, Jr. J. Douglas and X. Ye, A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo36 (1999) 215-232.  
  8. C. Carstensen, S. Bartels and S. Jansche, A posteriori error estimates for nonconforming finite element methods. Berichtsreihe des Mathematischen Seminars Kiel, Report Nr. 00-13, Christian-Albrechts-Universität zu Kiel (2000).  
  9. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér.7 (1973) 33-76.  
  10. E. Dari, R. Durán and C. Padra, Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp.64 (1995) 1017-1033.  
  11. E. Dari, R. Durán, C. Padra and V. Vampa, A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér.30 (1996) 385-400.  
  12. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin, Heidelberg, New York (1986).  
  13. J.-P. Hennart, J. Jaffre and J.E. Roberts, A constructive method for deriving finite elements of nodal type. Numer. Math.53 (1988) 701-738.  
  14. R.H.W. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér.30 (1996) 237-263.  
  15. V. John, A posteriori error estimators for the nonconforming P1-finite element discretization of convection-diffusion equations. Preprint 10/97, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (1997). .  URIhttp://www-ian.math.uni-magdeburg.de/home/john/
  16. V. John, A posterioriL2-error estimates for the nonconforming P1/P0-finite element discretization of the Stokes equations. J. Comput. Appl. Math.96 (1998) 99-116.  
  17. G. Kanschat and F.-T. Suttmeier, A posteriori error estimates for nonconforming finite element schemes. Calcolo36 (1999) 129-141.  
  18. R. Rannacher, Error control in finite element computations. Preprint 98-54, Universität Heidelberg, IWR (1998). .  URIhttp://www.iwr.uni-heidelberg.de/
  19. R. Rannacher, Adaptive Galerkin finite element methods for partial differential equations. J. Comput. Appl. Math.128 (2001) 205-233.  
  20. R. Rannacher and S. Turek, Simple nonconforming quadrilateral stokes element. Numer. Methods Partial Differential Equations8 (1992) 97-111.  
  21. F. Schieweck, A parallel multigrid algorithm for solving the Navier-Stokes equations. IMPACT Comput. Sci. Eng.5 (1993) 345-378.  
  22. F. Schieweck, Parallele Lösung der stationären inkompressiblen Navier-Stokes Gleichungen. Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (1996). Habilitation. .  URIhttp://www-ian.math.uni-magdeburg.de/home/schieweck
  23. F. Schieweck, A general transfer operator for arbitrary finite element spaces. Preprint 25/00, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (2000). .  URIhttp://www-ian.math.uni-magdeburg.de/home/schieweck
  24. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp.54 (1990) 483-493.  
  25. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner series in advances in numerical mathematics, Wiley-Teubner (1996).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.