A posteriori Error Estimates with Post-Processing for Nonconforming Finite Elements
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 36, Issue: 3, page 489-503
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topSchieweck, Friedhelm. "A posteriori Error Estimates with Post-Processing for Nonconforming Finite Elements." ESAIM: Mathematical Modelling and Numerical Analysis 36.3 (2010): 489-503. <http://eudml.org/doc/194113>.
@article{Schieweck2010,
abstract = {
For a nonconforming finite element approximation of an elliptic model
problem, we propose a posteriori error estimates in the energy norm
which use as an additive term the “post-processing error” between
the original nonconforming finite element solution and an easy
computable conforming approximation of that solution.
Thus, for the error analysis, the existing theory from the conforming
case can be used together with some simple additional arguments.
As an essential point, the property is exploited that the nonconforming
finite element space contains as a subspace a conforming finite element
space of first order. This property is fulfilled for many known
nonconforming spaces. We prove local lower and global upper a posteriori error estimates for
an enhanced error measure which is the discretization error in the
discrete energy norm plus the error of the best representation of the
exact solution by a function in the conforming space used for the
post-processing. We demonstrate that the idea to use a computed conforming approximation of
the nonconforming solution can be applied also to derive an a posteriori
error estimate for a linear functional of the solution which represents
some quantity of physical interest.
},
author = {Schieweck, Friedhelm},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {A posteriori error estimates; nonconforming finite elements;
post-processing.; a posteriori error estimate; post-processing; second order elliptic equation},
language = {eng},
month = {3},
number = {3},
pages = {489-503},
publisher = {EDP Sciences},
title = {A posteriori Error Estimates with Post-Processing for Nonconforming Finite Elements},
url = {http://eudml.org/doc/194113},
volume = {36},
year = {2010},
}
TY - JOUR
AU - Schieweck, Friedhelm
TI - A posteriori Error Estimates with Post-Processing for Nonconforming Finite Elements
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 3
SP - 489
EP - 503
AB -
For a nonconforming finite element approximation of an elliptic model
problem, we propose a posteriori error estimates in the energy norm
which use as an additive term the “post-processing error” between
the original nonconforming finite element solution and an easy
computable conforming approximation of that solution.
Thus, for the error analysis, the existing theory from the conforming
case can be used together with some simple additional arguments.
As an essential point, the property is exploited that the nonconforming
finite element space contains as a subspace a conforming finite element
space of first order. This property is fulfilled for many known
nonconforming spaces. We prove local lower and global upper a posteriori error estimates for
an enhanced error measure which is the discretization error in the
discrete energy norm plus the error of the best representation of the
exact solution by a function in the conforming space used for the
post-processing. We demonstrate that the idea to use a computed conforming approximation of
the nonconforming solution can be applied also to derive an a posteriori
error estimate for a linear functional of the solution which represents
some quantity of physical interest.
LA - eng
KW - A posteriori error estimates; nonconforming finite elements;
post-processing.; a posteriori error estimate; post-processing; second order elliptic equation
UR - http://eudml.org/doc/194113
ER -
References
top- M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg.142 (1997) 1-88.
- L. Angermann, A posteriori error estimates for FEM with violated Galerkin orthogonality. Preprint 27/98, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (1998).
- R. Becker, M. Braack, R. Rannacher and C. Waguet, Fast and reliable solution of the Navier-Stokes equations including chemistry. Comput. Vis. Sci.2 (1999) 107-122.
- R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math.4 (1996) 237-264.
- C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal.35 (1998) 1893-1916.
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Ser. Comput. Math. Springer-Verlag (1991).
- Z. Cai, Jr. J. Douglas and X. Ye, A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo36 (1999) 215-232.
- C. Carstensen, S. Bartels and S. Jansche, A posteriori error estimates for nonconforming finite element methods. Berichtsreihe des Mathematischen Seminars Kiel, Report Nr. 00-13, Christian-Albrechts-Universität zu Kiel (2000).
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér.7 (1973) 33-76.
- E. Dari, R. Durán and C. Padra, Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp.64 (1995) 1017-1033.
- E. Dari, R. Durán, C. Padra and V. Vampa, A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér.30 (1996) 385-400.
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin, Heidelberg, New York (1986).
- J.-P. Hennart, J. Jaffre and J.E. Roberts, A constructive method for deriving finite elements of nodal type. Numer. Math.53 (1988) 701-738.
- R.H.W. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér.30 (1996) 237-263.
- V. John, A posteriori error estimators for the nonconforming P1-finite element discretization of convection-diffusion equations. Preprint 10/97, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (1997). . URIhttp://www-ian.math.uni-magdeburg.de/home/john/
- V. John, A posterioriL2-error estimates for the nonconforming P1/P0-finite element discretization of the Stokes equations. J. Comput. Appl. Math.96 (1998) 99-116.
- G. Kanschat and F.-T. Suttmeier, A posteriori error estimates for nonconforming finite element schemes. Calcolo36 (1999) 129-141.
- R. Rannacher, Error control in finite element computations. Preprint 98-54, Universität Heidelberg, IWR (1998). . URIhttp://www.iwr.uni-heidelberg.de/
- R. Rannacher, Adaptive Galerkin finite element methods for partial differential equations. J. Comput. Appl. Math.128 (2001) 205-233.
- R. Rannacher and S. Turek, Simple nonconforming quadrilateral stokes element. Numer. Methods Partial Differential Equations8 (1992) 97-111.
- F. Schieweck, A parallel multigrid algorithm for solving the Navier-Stokes equations. IMPACT Comput. Sci. Eng.5 (1993) 345-378.
- F. Schieweck, Parallele Lösung der stationären inkompressiblen Navier-Stokes Gleichungen. Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (1996). Habilitation. . URIhttp://www-ian.math.uni-magdeburg.de/home/schieweck
- F. Schieweck, A general transfer operator for arbitrary finite element spaces. Preprint 25/00, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (2000). . URIhttp://www-ian.math.uni-magdeburg.de/home/schieweck
- L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp.54 (1990) 483-493.
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner series in advances in numerical mathematics, Wiley-Teubner (1996).
Citations in EuDML Documents
top- Reiner Vanselow, New results concerning the DWR method for some nonconforming FEM
- Linda El Alaoui, Alexandre Ern, Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods
- Linda El Alaoui, Alexandre Ern, Residual and hierarchical error estimates for nonconforming mixed finite element methods
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.