Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods
Linda El Alaoui; Alexandre Ern
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 38, Issue: 6, page 903-929
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- B. Achchab, S. Achchab and A. Agouzal, Hierarchical robust a posteriori error estimator for a singularly pertubed problem. C.R Acad. Paris I336 (2003) 95–100.
- B. Achchab, A. Agouzal, J. Baranger and J.F. Maitre, Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. Numer. Math.80 (1998) 159–179.
- Y. Achdou and C. Bernardi, Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C.R Acad. Paris I333 (2001) 693–698.
- Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math.96 (2003) 17–42.
- M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley-Interscience Publication (2000).
- L. Angermann, A posteriori error estimates for FEM with violated Galerkin orthogonality. Numer. Methods Partial Differential Equations18 (2002) 241–259.
- D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér.19 (1985) 7–32.
- R. Bank and K. Smith, A posteriori estimates based on hierarchical bases. SIAM J. Numer. Anal.30 (1991) 921–935.
- R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comp.44 (1985) 283–301.
- R. Becker, P. Hansbo and M.G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Engrg.192 (2003) 723–733.
- C. Bernardi, private communication.
- C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math.85 (2000) 579–608.
- D. Braess, Finite elements. Cambridge Univ. Press (1997).
- C. Carstensen, A posteriori error estimate for the mixed finite element method. Math. Comp.66 (1997) 465–476.
- C. Carstensen and A. Funken, A posteriori error control in low-order finite element discretizations of incompressible stationary flow problems. Math. Comp.70 (2000) 1353–1381.
- B. Courbet and J.-P. Croisille, Finite volume box schemes on triangular meshes. RAIRO Modél. Math. Anal. Numér.32 (1998) 631–649.
- J.-P. Croisille, Finite volume box schemes and mixed methods. ESAIM: M2AN31 (2000) 1087–1106.
- J.-P. Croisille and I. Greff, Some nonconforming mixed box schemes for elliptic problems. Numer. Methods Partial Differential Equations8 (2002) 355–373.
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming mixed finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér.3 (1973) 33–75.
- E. Dari, R. Durán and C. Parda, Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp.64 (1995) 1017–1033.
- E. Dari, R. Durán, C. Parda and V. Vampa, A posteriori error estimators for nonconforming finite element methods. RAIRO Modél Math. Anal. Numér.30 (1996) 385–400.
- A. Ern and J.-L. Guermond, Theory and practice of finite elements, Appl. Math. Ser., Springer, New York 159 (2004).
- M. Fortin and M. Soulié, A non-conforming piecewise quadratic finite element on triangles. Int. J. Num. Meth. Engrg.19 (1983) 505–520.
- R.H.W. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for non-conforming finite element methods. RAIRO Modél. Math. Anal. Numér.30 (1996) 237–263.
- V. John, A posterioriL2-error estimates for the nonconforming P1/P0-finite element discretization of the Stokes equations. J. Comput. Appl. Math.96 (1998) 99–116.
- G. Kanschat and F.-T. Suttmeier, A posteriori error estimates for non-conforming finite element schemes. Calcolo36 (1999) 129–141.
- O. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal.41 (2003) 2374–2399.
- P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, E. Magenes and I. Galligani Eds., Springer-Verlag, New York, Lect. Notes Math.606 (1977).
- F. Schieweck, A posteriori error estimates with post-processing for nonconforming finite elements. ESAIM: M2AN36 (2002) 489–503.
- J.-M. Thomas and D. Trujillo, Mixed finite volume methods. Int. J. Num. Meth. Engrg.46 (1999) 1351–1366.
- R. Verfürth, A posteriori error estimators for the Stokes equations. II. Non-conforming discretizations. Numer. Math.60 (1991) 235–249.
- R. Verfürth, A review of a posteriori error estimation and adaptative mesh-refinement techniques. Chichester, England (1996).
- B.I. Wohlmuth and R.H.W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas. Math. Comp.68 (1999) 1347–1378.