New results concerning the DWR method for some nonconforming FEM

Reiner Vanselow

Applications of Mathematics (2012)

  • Volume: 57, Issue: 6, page 551-568
  • ISSN: 0862-7940

Abstract

top
This paper presents a unified framework for the dual-weighted residual (DWR) method for a class of nonconforming FEM. Our approach is based on a modification of the dual problem and uses various ideas from literature which are combined in a new manner. The results are new error identities for some nonconforming FEM. Additionally, a posteriori error estimates with respect to the discrete H 1 -seminorm are derived.

How to cite

top

Vanselow, Reiner. "New results concerning the DWR method for some nonconforming FEM." Applications of Mathematics 57.6 (2012): 551-568. <http://eudml.org/doc/246641>.

@article{Vanselow2012,
abstract = {This paper presents a unified framework for the dual-weighted residual (DWR) method for a class of nonconforming FEM. Our approach is based on a modification of the dual problem and uses various ideas from literature which are combined in a new manner. The results are new error identities for some nonconforming FEM. Additionally, a posteriori error estimates with respect to the discrete $H^1$-seminorm are derived.},
author = {Vanselow, Reiner},
journal = {Applications of Mathematics},
keywords = {nonconforming finite elements; dual-weighted residual method; a posteriori error estimate; Poisson equation; finite element method; Helmholtz decomposition; Poisson equation; finite element method; a posteriori error estimates; dual-weighted residual method; Helmholtz decomposition},
language = {eng},
number = {6},
pages = {551-568},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New results concerning the DWR method for some nonconforming FEM},
url = {http://eudml.org/doc/246641},
volume = {57},
year = {2012},
}

TY - JOUR
AU - Vanselow, Reiner
TI - New results concerning the DWR method for some nonconforming FEM
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 6
SP - 551
EP - 568
AB - This paper presents a unified framework for the dual-weighted residual (DWR) method for a class of nonconforming FEM. Our approach is based on a modification of the dual problem and uses various ideas from literature which are combined in a new manner. The results are new error identities for some nonconforming FEM. Additionally, a posteriori error estimates with respect to the discrete $H^1$-seminorm are derived.
LA - eng
KW - nonconforming finite elements; dual-weighted residual method; a posteriori error estimate; Poisson equation; finite element method; Helmholtz decomposition; Poisson equation; finite element method; a posteriori error estimates; dual-weighted residual method; Helmholtz decomposition
UR - http://eudml.org/doc/246641
ER -

References

top
  1. Ainsworth, M., 10.1137/S0036142903425112, SIAM J. Numer. Anal. 42 (2005), 2320-2341. (2005) Zbl1085.65102MR2139395DOI10.1137/S0036142903425112
  2. Ainsworth, M., A posteriori error estimation for non-conforming quadrilateral finite elements, Int. J. Numer. Anal. Model. 2 (2005), 1-18. (2005) Zbl1071.65141MR2112654
  3. Ainsworth, M., Rankin, R., 10.1137/07070838X, SIAM J. Numer. Anal. 46 (2008), 3207-3232. (2008) Zbl1180.65141MR2448662DOI10.1137/07070838X
  4. Ainsworth, M., Vejchodský, T., 10.1007/s00211-011-0384-1, Numer. Math. 119 (2011), 219-243. (2011) Zbl1229.65194MR2836086DOI10.1007/s00211-011-0384-1
  5. Becker, R., Rannacher, R., 10.1017/S0962492901000010, Acta Numerica 10 (2001), 1-102. (2001) Zbl1105.65349MR2009692DOI10.1017/S0962492901000010
  6. Carstensen, C., Hu, J., Orlando, A., 10.1137/050628854, SIAM J. Numer. Anal. 45 (2007), 68-82. (2007) Zbl1165.65072MR2285845DOI10.1137/050628854
  7. Carstensen, C., Hu, J., 10.1007/s00211-007-0068-z, Numer. Math. 107 (2007), 473-502. (2007) MR2336116DOI10.1007/s00211-007-0068-z
  8. Dari, E., Duran, R., Padra, C., Vampa, V., 10.1051/m2an/1996300403851, RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 385-400. (1996) Zbl0853.65110MR1399496DOI10.1051/m2an/1996300403851
  9. Jr., J. Douglas, Santos, J. E., Sheen, D., Ye, X., 10.1051/m2an:1999161, M2AN, Math. Model. Numer. Anal. 33 (1999), 747-770. (1999) Zbl0941.65115MR1726483DOI10.1051/m2an:1999161
  10. Grajewski, M., Hron, J., Turek, S., 10.1016/j.apnum.2004.09.016, Appl. Numer. Math. 54 (2005), 504-518. (2005) Zbl1074.65123MR2149366DOI10.1016/j.apnum.2004.09.016
  11. Han, H.-D., A finite element approximation of Navier-Stokes equations using nonconforming elements, J. Comput. Math. 2 (1984), 77-88. (1984) Zbl0598.76029
  12. Kanschat, G., Suttmeier, F.-T., 10.1007/s100920050027, Calcolo 36 (1999), 129-141. (1999) Zbl0936.65128MR1742308DOI10.1007/s100920050027
  13. Rannacher, R., Turek, S., 10.1002/num.1690080202, Numer. Methods Partial Differ. Equations 8 (1992), 97-111. (1992) Zbl0742.76051MR1148797DOI10.1002/num.1690080202
  14. Schieweck, F., 10.1051/m2an:2002022, M2AN, Math. Model. Numer. Anal. 36 (2002), 489-503. (2002) Zbl1041.65083MR1918941DOI10.1051/m2an:2002022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.