# Mixed Finite Element approximation of an MHD problem involving conducting and insulating regions: the 2D case

Jean Luc Guermond; Peter D. Minev

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

- Volume: 36, Issue: 3, page 517-536
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topGuermond, Jean Luc, and Minev, Peter D.. "Mixed Finite Element approximation of an MHD problem involving conducting and insulating regions: the 2D case." ESAIM: Mathematical Modelling and Numerical Analysis 36.3 (2010): 517-536. <http://eudml.org/doc/194115>.

@article{Guermond2010,

abstract = {
We show that the Maxwell equations
in the low frequency limit, in a domain composed of insulating
and conducting regions, has a saddle point structure, where
the electric field in the insulating region is the Lagrange
multiplier that enforces the curl-free constraint on the magnetic field.
We propose a mixed finite element technique
for solving this problem, and we show that, under mild regularity
assumption on the data, Lagrange finite elements can be used
as an alternative to edge elements.
},

author = {Guermond, Jean Luc, Minev, Peter D.},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Finite element method; Magnetohydrodynamics.; finite element method; magnetohydrodynamics},

language = {eng},

month = {3},

number = {3},

pages = {517-536},

publisher = {EDP Sciences},

title = {Mixed Finite Element approximation of an MHD problem involving conducting and insulating regions: the 2D case},

url = {http://eudml.org/doc/194115},

volume = {36},

year = {2010},

}

TY - JOUR

AU - Guermond, Jean Luc

AU - Minev, Peter D.

TI - Mixed Finite Element approximation of an MHD problem involving conducting and insulating regions: the 2D case

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2010/3//

PB - EDP Sciences

VL - 36

IS - 3

SP - 517

EP - 536

AB -
We show that the Maxwell equations
in the low frequency limit, in a domain composed of insulating
and conducting regions, has a saddle point structure, where
the electric field in the insulating region is the Lagrange
multiplier that enforces the curl-free constraint on the magnetic field.
We propose a mixed finite element technique
for solving this problem, and we show that, under mild regularity
assumption on the data, Lagrange finite elements can be used
as an alternative to edge elements.

LA - eng

KW - Finite element method; Magnetohydrodynamics.; finite element method; magnetohydrodynamics

UR - http://eudml.org/doc/194115

ER -

## References

top- T. Amari, J.F. Luciani and P. Joly, A preconditioned semi-implicit method for magnetohydrodynamics equation. SIAM J. Sci. Comput.21 (1999) 970-986.
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag, New York, Springer Ser. Comput. Math. 15 (1991).
- A. Bossavit, Electromagnétisme en vue de la modélisation. SMAI/Springer-Verlag, Paris, Math. Appl. 14 (1993). See also Computational Electromagnetism, Variational Formulations, Complementary, Edge Elements, Academic Press (1998).
- H. Brezis, Analyse fonctionnelle. Masson, Paris (1991).
- P. Clément, Approximation by finite element functions using local regularization. Anal. Numér.9 (1975) 77-84.
- M. Costabel, A coercive bilinear form for Maxwell's equations. J. Math. Anal. Appl.157 (1991) 527-541.
- M.L. Dudley and R.W. James, time-dependent kinematic dynamos with stationary flows. Proc. Roy. Soc. LondonA425 (1989) 407-429.
- L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. Methods Appl. Mech. Engrg.152 (1998) 103-124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997).
- J.-F. Gerbeau, A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math.87 (2000) 83-111.
- J.-L. Guermond, J. Léorat and C. Nore, Numerical simulations of 2D MHD problems using Lagrange finite elements (in preparation 2001).
- J.-L. Guermond and P.D. Minev, Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case (submitted 2002).
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Springer Ser. Comput. Math. 5 (1986).
- J. Léorat, Numerical simulations of cylindrical dynamos: scope and method. In 7th beer-Sheva Onternatal seminar, Vol. 162, pp. 282-292. AIAA Progress in Astronautics and aeronautic series, 1994.
- J. Léorat, Linear dynamo simulations with time dependent helical flows. Magnetohydrodynamics31 (1995) 367-373.
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968).
- H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1978).
- A.J. Meir and P.G. Schmidt, Analysis and numerical approximation of a stationary MHD flow problem with non-ideal boundary. SIAM J. Numer. Anal.36 (1999) 1304-1332.
- J. Necas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967).
- J.-C. Nédélec, A new family of mixed finite elements in ${\mathbb{R}}^{3}$. Numer. Math.50 (1986) 57-81.
- R.L. Parker, Reconnexion of lines of force in rotating spheres and cylinders. Proc. Roy. Soc.291 (1966) 60-72.
- N. Ben Salah, A. Soulaimani and W.G. Habashi, A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg.190 (2001) 5867-5892.
- N. Ben Salah, A. Soulaimani, W.G. Habashi and M. Fortin, A conservative stabilized finite element method for magnetohydrodynamics equations. Internat. J. Numer. Methods Fluids29 (1999) 535-554.
- R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equation. RAIRO Anal. Numér.18 (1984) 175-182.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.