Asymptotic analysis for the Ginzburg-Landau equations

Tristan Rivière

Bollettino dell'Unione Matematica Italiana (1999)

  • Volume: 2-B, Issue: 3, page 537-575
  • ISSN: 0392-4041

How to cite

top

Rivière, Tristan. "Asymptotic analysis for the Ginzburg-Landau equations." Bollettino dell'Unione Matematica Italiana 2-B.3 (1999): 537-575. <http://eudml.org/doc/195905>.

@article{Rivière1999,
author = {Rivière, Tristan},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {537-575},
publisher = {Unione Matematica Italiana},
title = {Asymptotic analysis for the Ginzburg-Landau equations},
url = {http://eudml.org/doc/195905},
volume = {2-B},
year = {1999},
}

TY - JOUR
AU - Rivière, Tristan
TI - Asymptotic analysis for the Ginzburg-Landau equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 1999/10//
PB - Unione Matematica Italiana
VL - 2-B
IS - 3
SP - 537
EP - 575
LA - eng
UR - http://eudml.org/doc/195905
ER -

References

top
  1. ALMEIDA, L.- BETHUEL, F., Multiplicity results for the Ginzburg-Landau equation in presence of symmetries, Houston J. Math., 23 (1997), 733-764. Zbl0901.35029MR1687389
  2. ALMEIDA, L.- BETHUEL, F., Topological Methods for the Ginzburg-Landau Equations, J. Math. Pures Appl., 77 (1998), 1-49. Zbl0904.35023MR1617594
  3. BETHUEL, F.- BREZIS, H.- HÉLEIN, F., Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of variations and PDE1 (1993), 123-148. Zbl0834.35014MR1261720
  4. BETHUEL, F.- BREZIS, H.- HÉLEIN, F., Ginzburg-Landau vortices, Birkhaüser (1994). Zbl0802.35142MR1269538
  5. BETHUEL, F.- RIVIÈRE, T., Vortices for a variational problem related to supraconductivity, Ann. Inst. Henri Poincaré (analyse non linéaire), 12, 3 (1995), 243-303. Zbl0842.35119MR1340265
  6. BETHUEL, F.- RIVIÈRE, T., Vorticité dans les modèles de Ginzburg-Landau pour la supraconductivité, Ecole Polytechnique, Séminaire EDP XVI (1994). Zbl0876.35112MR1300912
  7. JAFFE, A.- TAUBES, C., Vortices and Monopoles, Birkhäuser (1980). Zbl0457.53034MR614447
  8. JERRARD, R.- SONER, M., Dynamics of Ginzburg-Landau Vortices, to appear in Arch. Rat. Mech. Anal. Zbl0923.35167
  9. LIN, F. H., Some Dynamical properties of Ginzburg-Landau Vortices, Comm. Pure and App. Math (1996), 323-359. A remark on the previous paper..., Comm. Pure and App. Math. (1996), 361-364. Zbl0853.35059MR1376654
  10. LIN, F. H., Complex Ginzburg-Landau Equations and Dynamics of Vortices, Filaments and Codimension 2 Submanifolds, preprint (1997). Zbl0932.35121MR1491752
  11. LIN, F. H.- LIN, T. C., Minimax solutions of the Ginzburg-Landau equations, preprint (1996). Zbl0876.49006
  12. LIN, F. H.- RIVIÈRE, T., Complex Ginzburg-Landau Equations in High Dimensions and Codimension two Area Minimizing Currents, to appear. Zbl0939.35056
  13. PACARD, F.- RIVIÈRE, T., Construction of Ginzburg-Landau solutions having regular zero-set for large coupling constant, preprint CMLA ENS-Cachan (1998). 
  14. PACARD, F.- RIVIÈRE, T., A uniqueness result for the minimizers of the Ginzburg-Landau Functional, preprint CMLA ENS-Cachan (1998). 
  15. RIVIÈRE, T., Line vortices in the U 1 -Higgs Model, C.O.C.V., 1 (1996), 77-167. Zbl0874.53019MR1394302
  16. SAINT-JAMES, D.- SARMA, G.- THOMAS, E. J., Type II Superconductivity, Pergamon Press (1969). 
  17. SERFATY, S., Local minimizers for the Ginzburg-Landau energy near Critical Magnetic Field, preprint Orsay (1997). Zbl0944.49007
  18. STRUWE, M., On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2-dimensions, J. Diff. Int. Equations, 7 (1994), 1613-1624 and Erratum in J. Diff. Int. Zbl0809.35031MR1269674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.