Ginzburg-Landau vortices : the static model
Séminaire Bourbaki (1999-2000)
- Volume: 42, page 73-103
- ISSN: 0303-1179
Access Full Article
topHow to cite
topRivière, Tristan. "Ginzburg-Landau vortices : the static model." Séminaire Bourbaki 42 (1999-2000): 73-103. <http://eudml.org/doc/110284>.
@article{Rivière1999-2000,
author = {Rivière, Tristan},
journal = {Séminaire Bourbaki},
keywords = {energy functional; London limit; gauge invariance; superconductivity},
language = {eng},
pages = {73-103},
publisher = {Société Mathématique de France},
title = {Ginzburg-Landau vortices : the static model},
url = {http://eudml.org/doc/110284},
volume = {42},
year = {1999-2000},
}
TY - JOUR
AU - Rivière, Tristan
TI - Ginzburg-Landau vortices : the static model
JO - Séminaire Bourbaki
PY - 1999-2000
PB - Société Mathématique de France
VL - 42
SP - 73
EP - 103
LA - eng
KW - energy functional; London limit; gauge invariance; superconductivity
UR - http://eudml.org/doc/110284
ER -
References
top- [Ab] A. Abrikosov - On the magnetic properties of superconductors of the second type, Soviet Phys. JETP5, 1174-1182 (1957).
- [Af] A. Aftalion - On the minimizers of the Ginzburg-Landau energy for high kappa: the one-dimensional case, European J. Appl. Math.8, 331-345 (1997). Zbl0886.34019MR1471596
- [AT] A. Aftalion and C. Troy - On the solutions of the one dimensional Ginzburg-Landau Equations, Preprint LMENS (1998).
- [AB1] L. Almeida and F. Bethuel - Multiplicity results for the Ginzburg-Landau equation in presence of symmetries, Houston J. Math.23, 733-764 (1997). Zbl0901.35029MR1687389
- [AB2] L. Almeida and F. Bethuel - Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl.77, 1-49 (1998). Zbl0904.35023MR1617594
- [BBC] H. Berestycki, A. Bonnet and J. Chapman - A semi-elliptic system arising in the theory of type-II superconductivity, Comm. Appl. Non-linear Anal.1, 1-21 (1994). Zbl0866.35030
- [BC] M.S. Berger and Y.Y. Chen - Symmetric vortices for the Ginzburg-Landau equations of superconductivity and the nonlinear desingularization, phenomenon, Journal of Funct. Anal.82, 259-295 (1989). Zbl0685.46051MR987294
- [BBH0] F. Bethuel, H. Brezis, and F. Hélein - Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differ. Equ.1, 2, 123-148 (1993). Zbl0834.35014MR1261720
- [BBH] F. Bethuel, H. Brezis and F. Hélein - Ginzburg-Landau vortices, Birkhäuser (1994). Zbl0802.35142MR1269538
- [BR1] F. Bethuel and T. Rivière - Vortices for a variational problem related to supraconductivity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire12, 3, 243-303 (1995). Zbl0842.35119MR1340265
- [BR2] F. Bethuel and T. Rivière - Vorticité dans les modèles de Ginzburg-Landau pour la supraconductivité, Seminaire EDP de l'École Polytechnique, exposé XVI (1994). Zbl0876.35112MR1300912
- [Bog] B. Bogomol'nyi — Soviet J. Nucl. Phys.24, 449 (1976). MR443719
- [BH1] C. Bolley and B. Helffer - Rigorous results on Ginzburg-Landau models in a film submitted to an exterior parallel magnetic field I and II, Non Linear Stud.3, 1-29 and 121-152 (1996). Zbl0869.34016MR1396033
- [BH2] C. Bolley and B. Helffer - The ginzburg-Landau equations in a semi-infinite superconducting film in the large κ limit, European J. Appl. Math.8, 347-367 (1997). Zbl0891.35144
- [BCM] A. Bonnet, J. Chapman and R. Monneau - Convergence of Meissner minimizers of the Ginzburg-Landau energy of superconductivity as κ → +∞, preprint (1999).
- [BM] A. Bonnet and R. Monneau - Existence of a smooth free-boundary in a superconductor with a Nash-Moser inverse function theorem argument, preprint (1999).
- [BBM] J. Bourgain, H. Brezis and P. Mironescu - Lifting properties of Sobolev maps, in preparation.
- [BMR] H. Brezis, F. Merle and T. Rivière - Quantization effects for -Δu = u(1 - |u|2) in R2, Arch. Rat. Mech. Analysis. 126, 123-145 (1994). Zbl0809.35019
- [DL] Q. Du and H. Lin - Ginzburg-Landau vortices: dynamics, pinning and hysteresis, Siam J. Math. Anal.28, 1265-1293 (1997). Zbl0888.35054MR1474214
- [D] M. Dutour - Bifurcation vers l'état d'Abrikosov et diagramme de phase, thèse de l'Université Paris-Sud, Orsay (1999).
- [dG] G. De Gennes - Superconductivity of Metal and Alloys, Benjamin, New-York and Amsterdam (1966). Zbl0138.22801
- [GS] S. Gueron and I. Shafrir - On a discrete variational problem involving interacting particles, to appear in SIAM J. Appl. Math. (1999). Zbl0962.49025MR1740832
- [JT] A. Jaffe and C. Taubes - Vortices and Monopoles, Birkhäuser (1980). Zbl0457.53034MR614447
- [J] R. Jerrard - Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal.30, 721-746 (1999). Zbl0928.35045MR1684723
- [LL] H. Lin and C. Lin - Minimax solutions of the Ginzburg-Landau equations, Selecta Mathematica, New Series 3, 99-113 (1997). Zbl0876.49006MR1454087
- [LR] H. Lin and T. Rivière - Complex Ginzburg-Landau equations and codimension 2 minimal surfaces, J.E.M.S.1, 3 (1999).
- [LR2] H. Lin and T. Rivière - A quantization property for static Ginzburg-Landau vortices, Comm. Pure and App. Math. (2000). Zbl1033.58013
- [Mi] P. Mironescu - Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale, C.R. Acad. Sci. Paris, Ser.1, 323, 593-598 (1996). Zbl0858.35038MR1411048
- [OS] N. Ovchinnikov and M. Sigal - The Ginzburg-Landau equation I. Static vortices, Partial differential equations and their applications (Toronto, ON, 1995), 199-220, CRM Proc. Lecture Notes12, Amer. Math. Soc., Providence, RI (1997). Zbl0912.35078MR1479248
- [PR] F. Pacard and T. Rivière - Linear and non-linear aspects of vortices, Birkhäuser (2000). Zbl0948.35003MR1763040
- [Qin] J. Qing - Renormalized energy for Ginzburg-Landau vortices on closed surfaces, Math. Z.225, 1-34 (1997). Zbl0871.49035MR1451329
- [Ri1] T. Rivière - Asymptotic analysis for the Ginzburg-Landau equations, ETH-Zürich course, January 1997, Boll U.M.I. (1999). MR1719570
- [Ri2] T. Rivière - Line vortices in the U(1)-Higgs Model, COCV 1, 77-167 (1995). Zbl0874.53019MR1394302
- [Ri3] T. Rivière - Some progress towards Jaffe and Taubes Conjectures, preprint (1999).
- [R] F. Rodrigues - Obstacle problems in mathematical physics, Mathematical Studies, North Holland (1987). Zbl0606.73017MR880369
- [SST] D. Saint-James, G. Sarma and J. Thomas - Type-II Superconductivity, Pergamon Press (1969).
- [Sa] E. Sandier - Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal.152, 379-403 (1998). Zbl0908.58004MR1607928
- [SS1] E. Sandier and S. Serfaty - Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, to appear in Annales de l'Inst. Henri Poincaré, Analyse non-linéaire (1999). Zbl0947.49004MR1743433
- [SS2] E. Sandier and S. Serfaty - A rigourous derivation of a free-boundary problem arising in superconductivity, Ann. Sci. Éc. Norm. Sup.33 (2000), 561-592. Zbl1174.35552MR1832824
- [Se1] S. Serfaty - Étude mathématique de l'équation de Ginzburg-Landau de la supraconductivité, Thèse de l'Université Paris-Sud, Orsay (1999).
- [Se2] S. Serfaty - Local minimizers for the Ginzburg-Landau energy near critical magnetic field I and II, Comm. Contemporary Mathematics1, n° 2 et 3, 213-254 (1999). Zbl0944.49007MR1696100
- [Se3] S. Serfaty - Stable configurations in superconductivity: uniqueness, multiplicity and vortex-nucleation, to appear in : Arch. Rat. Mech. Anal. (1999). Zbl0959.35154MR1731999
- [St] M. Struwe - On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, J. Diff. Int. Equations7 (1994), 1613-1624 and Erratum in J. Diff. Int. Zbl0809.35031MR1269674
- [Ti] M. Tinkham - Introduction to Superconductivity, 2nd edition, McGraw-Hill (1996).
- [Uh] K. Uhlenbeck - Connections with Lp bounds on curvature, Comm. Math. Phys.83, 31-42 (1982). Zbl0499.58019MR648356
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.