Choquet capacity theory

Jaroslav Lukeš; Ivan Netuka; Jiří Veselý

Pokroky matematiky, fyziky a astronomie (2002)

  • Volume: 47, Issue: 4, page 265-279
  • ISSN: 0032-2423

How to cite

top

Lukeš, Jaroslav, Netuka, Ivan, and Veselý, Jiří. "Choquetova teorie kapacit." Pokroky matematiky, fyziky a astronomie 47.4 (2002): 265-279. <http://eudml.org/doc/196701>.

@article{Lukeš2002,
author = {Lukeš, Jaroslav, Netuka, Ivan, Veselý, Jiří},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {Newton capacity; Choquet capacity; outer capacity; analytic set; Borel set},
language = {cze},
number = {4},
pages = {265-279},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Choquetova teorie kapacit},
url = {http://eudml.org/doc/196701},
volume = {47},
year = {2002},
}

TY - JOUR
AU - Lukeš, Jaroslav
AU - Netuka, Ivan
AU - Veselý, Jiří
TI - Choquetova teorie kapacit
JO - Pokroky matematiky, fyziky a astronomie
PY - 2002
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 47
IS - 4
SP - 265
EP - 279
LA - cze
KW - Newton capacity; Choquet capacity; outer capacity; analytic set; Borel set
UR - http://eudml.org/doc/196701
ER -

References

top
  1. Adams, D. R., Choquet integrals in potential theory, Publ. Mat. (1) 42 (1998), 3–66. (1998) Zbl0923.31006MR1628134
  2. Adams, D. R., Hedberg, L. I., Function spaces and potential theory, SpringerV̄erlag, Berlin 1999. (1999) Zbl0834.46021MR1411441
  3. Aikawa, H., Essén, M., Potential Theory — selected topics, Lecture Notes in Math. 1633, SpringerV̄erlag, Berlin 1996. (1633) Zbl0865.31001MR1439503
  4. Anger, B., Approximation of capacities by measures, In: Lecture Notes in Math. 226, Springer-Verlag, Berlin 1971, 152–170. (1971) MR0396885
  5. Anger, B., Representation of capacities, Math. Ann. 229 (1977), 245–258. (1977) Zbl0339.31010MR0466588
  6. Armitage, D. H., Gardiner, S. J., Classical potential theory, Springer-Verlag, London 2001. (2001) Zbl0972.31001MR1801253
  7. Arsove, M. G., The Wiener-Dirichlet problem and the theorem of Evans, Math. Z. 103 (1968), 184–194. (1968) Zbl0168.09503MR0220957
  8. Bliedtner, J., Hansen, W., Potential theory — An analytic and probabilistic approach to balayage, Springer-Verlag, Berlin 1986. (1986) Zbl0706.31001MR0850715
  9. Carleson, L., Lectures on exceptional sets, Van Nostrand, Princeton 1967. (1967) Zbl0189.10903MR0225986
  10. Dellacherie, C., Capacités, rabotages et ensembles analytiques, Séminaire Choquet, G., Rogalski, M., Saint-Raymond, J., 19e année, Initiation à l’Analyse, Publ. Math. Univ. Pierre et Marie Curie 41, Univ. Paris VI, Paris 1980. (1980) Zbl0504.28002MR0670775
  11. Dellacherie, C., Meyer, P.-A., Probabilités et potentiel, Chapitres I à IV, Hermann, Paris 1975. (1975) Zbl0323.60039MR0488194
  12. Denneberg, D., Non-additive measure and integral, Kluwer Academic Publishers Group, Dordrecht 1994. (1994) Zbl0826.28002MR1320048
  13. Doob, J. L., Classical potential theory and its probabilistic counterpart, SpringerV̄erlag, New York 1984. (1984) Zbl0549.31001MR0731258
  14. Fan, S. C., Integration with respect to an upper measure function, Amer. J. Math. 63 (1941), 319–338. (1941) Zbl0025.03401MR0003703
  15. Fuglede, B., Capacity as a sublinear functional generalizing an integral, Danske Vid. Selsk. Mat.-Fys. Medd. (7) 38 (1971). (1971) Zbl0222.31002MR0291488
  16. Helms, L. L., Introduction to potential theory, Wiley-Interscience, New York – London –– Sydney 1969. (1969) Zbl0188.17203MR0261018
  17. Choquet, G., Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953/54), 131–295. (1953) Zbl0064.35101MR0080760
  18. Choquet, G., Lectures on analysis I–III, W. A. Benjamin, Inc., New York–Amsterdam 1969. (1969) Zbl0181.39603
  19. Choquet, G., Vznik teorie kapacit: zamyšlení nad vlastní zkušeností, Pokroky Mat. Fyz. Astronom. 34 (1989), 71–83. (1989) 
  20. König, H., Measure and integration. An advanced course in basic procedures and applications, Springer-Verlag, Berlin 1997. (1997) Zbl0887.28001MR1633615
  21. Král, J., Netuka, I., Veselý, J., Teorie potenciálu II., III., IV, SPN, Praha 1972, 1976, 1977. (1972) 
  22. Kuratowski, K., Topology I, Academic Press, New York 1966. (1966) MR0217751
  23. Lorentz, G. G., Who discovered analytic sets?, Math. Inteligencer (4) 23 (2001), 28–32. (2001) MR1858643
  24. Lukeš, J., Lebesgueův integrál, Časopis Pěst. Mat. (4) 91 (1966), 371–383. (1966) 
  25. Lukeš, J., Malý, J., Measure and integral, Matfyzpress, Praha 1995. (1995) Zbl0888.28001
  26. Lukeš, J., Malý, J., Zajíček, L., Fine topology methods in real analysis and potential theory, Lecture Notes in Math. 1189, Springer-Verlag, Berlin – New York 1986. (1189) Zbl0607.31001
  27. Meyer, P.-A., Probabilités et potentiel, Hermann, Paris 1966. (1966) Zbl0138.10402MR0205287
  28. Port, S. C., Stone, C. J., Brownian motion and classical potential theory, Academic Press, New York 1978. (1978) Zbl0413.60067MR0492329
  29. Rao, M. M., Measure theory and integration, Wiley-Interscience, New York 1987. (1987) Zbl0619.28001MR0891879
  30. Sedlák, B., Štoll, I., Elektřina a magnetismus, Academia, Praha 2002. (2002) 
  31. Wermer, J., Potential theory, Lecture Notes in Math. 408, Springer-Verlag, Berlin 1974. (1974) Zbl0297.31001MR0454033
  32. Wiener, N., Certain notions in potential theory, J. Math. Phys. M. I. T. 3 (1924), 24–51. (1924) Zbl50.0646.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.