Multichannel deblurring of digital images

Michal Šorel; Filip Šroubek; Jan Flusser

Kybernetika (2011)

  • Volume: 47, Issue: 3, page 439-454
  • ISSN: 0023-5954

Abstract

top
Blur is a common problem that limits the effective resolution of many imaging systems. In this article, we give a general overview of methods that can be used to reduce the blur. This includes the classical multi-channel deconvolution problems as well as challenging extensions to spatially varying blur. The proposed methods are formulated as energy minimization problems with specific regularization terms on images and blurs. Experiments on real data illustrate very good and stable performance of the methods.

How to cite

top

Šorel, Michal, Šroubek, Filip, and Flusser, Jan. "Multichannel deblurring of digital images." Kybernetika 47.3 (2011): 439-454. <http://eudml.org/doc/197088>.

@article{Šorel2011,
abstract = {Blur is a common problem that limits the effective resolution of many imaging systems. In this article, we give a general overview of methods that can be used to reduce the blur. This includes the classical multi-channel deconvolution problems as well as challenging extensions to spatially varying blur. The proposed methods are formulated as energy minimization problems with specific regularization terms on images and blurs. Experiments on real data illustrate very good and stable performance of the methods.},
author = {Šorel, Michal, Šroubek, Filip, Flusser, Jan},
journal = {Kybernetika},
keywords = {image restoration; blind deconvolution; deblurring; spatially varying blur; image restoration; blind deconvolution; deblurring; spatially varying blur},
language = {eng},
number = {3},
pages = {439-454},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Multichannel deblurring of digital images},
url = {http://eudml.org/doc/197088},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Šorel, Michal
AU - Šroubek, Filip
AU - Flusser, Jan
TI - Multichannel deblurring of digital images
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 3
SP - 439
EP - 454
AB - Blur is a common problem that limits the effective resolution of many imaging systems. In this article, we give a general overview of methods that can be used to reduce the blur. This includes the classical multi-channel deconvolution problems as well as challenging extensions to spatially varying blur. The proposed methods are formulated as energy minimization problems with specific regularization terms on images and blurs. Experiments on real data illustrate very good and stable performance of the methods.
LA - eng
KW - image restoration; blind deconvolution; deblurring; spatially varying blur; image restoration; blind deconvolution; deblurring; spatially varying blur
UR - http://eudml.org/doc/197088
ER -

References

top
  1. Ahmed, M., Farag, A., Non-metric calibration of camera lens distortion, In: Proc. Internat. Conf. of Image Processing 2001, Vol. 2, pp. 157–160. (2001) 
  2. Banham, M. R., Katsaggelos, A. K., 10.1109/79.581363, IEEE Signal Process. Mag. 14 (1997), 2, 24–41. (1997) DOI10.1109/79.581363
  3. Bar, L., Sochen, N. A., Kiryati, N., Restoration of images with piecewise space-variant blur, In: SSVM 2007, pp. 533–544. (2007) 
  4. Beck, A., Teboulle, M., 10.1109/TIP.2009.2028250, Trans. Image Process. 18 (2009), 11, 2419–2434. (2009) MR2722312DOI10.1109/TIP.2009.2028250
  5. Ben-Ezra, M., Lin, Z., Wilburn, B., Penrose pixels super-resolution in the detector layout domain, In: Proc. IEEE Internat. Conf. Computer Vision 2007, pp. 1–8. (2007) 
  6. Favaro, P., Burger, M., Soatto, S., Scene and motion reconstruction from defocus and motion-blurred images via anisothropic diffusion, In: ECCV 2004 (T. Pajdla and J. Matas, eds.), Lecture Notes in Comput. Sci. 3021, Springer Verlag, Berlin – Heidelberg 2004, pp. 257–269. (2004) 
  7. Favaro, P., Soatto, S., A variational approach to scene reconstruction and image segmentation from motion-blur cues, In: Proc. IEEE Conf. Computer Vision and Pattern Recognition 2004, Vol. 1, pp. 631–637. (2004) 
  8. Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., Freeman, W. T., 10.1145/1141911.1141956, ACM Trans. Graph. 25 (2006), 3, 787–794. (2006) DOI10.1145/1141911.1141956
  9. Heeger, D. J., Jepson, A. D., 10.1007/BF00128130, Internat. J. Computer Vision 7 (1992), 2, 95–117. (1992) DOI10.1007/BF00128130
  10. Levin, A., Blind motion deblurring using image statistics, In: NIPS 2006, pp. 841–848. (2006) 
  11. Levin, A., Fergus, R., Durand, F., Freeman, W. T., 10.1145/1276377.1276464, ACM Trans. Graph. 26 (2007), 3, 70. (2007) DOI10.1145/1276377.1276464
  12. Levin, A., Sand, P., Cho, T. S., Durand, F., Freeman, W. T., Motion-invariant photography, In: SIGGRAPH ’08: ACM SIGGRAPH 2008 Papers, ACM, New York 2008, pp. 1–9. (2008) 
  13. Lim, S. H., Silverstein, A. D., Method for Deblurring an Image, US Patent Application, Pub. No. US2006/0187308 A1, 2006. (2006) 
  14. Nagy, J. G., O’Leary, D. P., 10.1137/S106482759528507X, SIAM J. Sci. Comput. 19 (1998), 4, 1063–1082. (1998) MR1614295DOI10.1137/S106482759528507X
  15. Rajagopalan, A. N., Chaudhuri, S., 10.1109/34.777369, IEEE Trans. Pattern Anal. Mach. Intell. 21 (1999), 7, 577–589. (1999) DOI10.1109/34.777369
  16. Rudin, L. I., Osher, S., Fatemi, E., 10.1016/0167-2789(92)90242-F, Physica D 60 (1992), 259–268. (1992) Zbl0780.49028DOI10.1016/0167-2789(92)90242-F
  17. Šroubek, F., Flusser, J., 10.1109/TIP.2003.815260, IEEE Trans. Image Process. 12 (2003), 9, 1094–1106. (2003) MR2006855DOI10.1109/TIP.2003.815260
  18. Šroubek, F., Flusser, J., 10.1109/TIP.2005.849322, IEEE Trans. Image Process. 14 (2005), 7, 874–883. (2005) MR2170262DOI10.1109/TIP.2005.849322
  19. Tico, M., Trimeche, M., Vehvilainen, M., Motion blur identification based on differently exposed images, In: Proc. IEEE Internat. Conf. Image Processing 2006, pp. 2021–2024. (2006) 
  20. Tschumperlé, D., Deriche, R., 10.1109/TPAMI.2005.87, IEEE Trans. Pattern Analysis Machine Intelligence 27(2005), 4, 506–517. (2005) DOI10.1109/TPAMI.2005.87
  21. Šorel, M., Multichannel Blind Restoration of Images with Space-Variant Degradations, PhD Thesis, Charles University, Prague 2007. (2007) 
  22. Šorel, M., Flusser, J., 10.1109/TIP.2007.912928, IEEE Trans. Image Process. 17 (2008), 2, 105–116. (2008) MR2446000DOI10.1109/TIP.2007.912928
  23. Šorel, M., Šroubek, F., Space-variant deblurring using one blurred and one underexposed image, In: Proc. Internat. Conf. Image Processing, 2009, pp. 157–160. (2009) 
  24. M., Šroubek, F., Flusser, J., Towards superresolution in the presence of spatially varying blur, In: Super-Resolution Imaging (P. Milanfar, eds.), CRC Press 2010. (2010) 
  25. Šroubek, F., Cristobal, G., Flusser, J., 10.1109/TIP.2007.903256, IEEE Trans. Image Process. 16 (2007), 2322–2332. (2007) MR2468100DOI10.1109/TIP.2007.903256
  26. Whyte, O., Sivic, J., Zisserman, A., Ponce, J., Non-uniform deblurring for shaken images, In: Proc. IEEE Conf. Computer Vision and Pattern Recognition 2010. (2010) 
  27. Yu, W., 10.1109/TCE.2003.1261171, IEEE Trans. Consumer Electronics 49 (2003), 4, 894–901. (2003) DOI10.1109/TCE.2003.1261171
  28. Yuan, L., Sun, J., Quan, L., Shum, H.-Y., Image deblurring with blurred/noisy image pairs, In: SIGGRAPH ’07: ACM SIGGRAPH 2007 Papers, ACM, New York 2007, p. 1. (2007) 
  29. Zitová, B., Flusser, J., 10.1016/S0262-8856(03)00137-9, Image and Vision Computing 11 (2003), 21, 977–1000. (2003) DOI10.1016/S0262-8856(03)00137-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.