Entrelacements de semi-groupes provenant de paires de Gelfand
ESAIM: Probability and Statistics (2011)
- Volume: 15, page S2-S10
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- P. Biane, Quantum random walk on the dual of SU(n). Probab. Theory Relat. Fields89 (1991) 117–129.
- P. Biane, Minuscule weights and random walks on lattices, Quantum probability and related topics, QP-PQVII. World Scientific Publishing, River Edge, NJ (1992) 51–65.
- P. Biane, Intertwining of Markov semi-groups, some examples. in Séminaire de Probabilités XXIX. Lecture Notes in Math.1613, Springer, Berlin (1995) 30–36.
- P. Biane, Quantum Markov processes and group representations, Quantum probability communications, QP-PQX. World Scientific Publishing, River Edge, NJ (1998) 53–72.
- P. Biane, Le théorème de Pitman, le groupe quantique SUq(2), et une question de P.A. Meyer, In memoriam Paul-André Meyer, in Séminaire de Probabilités XXXIX. Lecture Notes in Math.1874, Springer, Berlin (2006) 61–75.
- P. Carmona, F. Petit and M. Yor, Beta-gamma random variables and intertwining relations between certain Markov processes. Rev. Mat. Iberoamericana14 (1998) 311–367.
- F.M. Choucroun, Analyse harmonique des groupes d'automorphismes d'arbres de Bruhat-Tits. Mém. Soc. Math. France (N.S.)58 (1994)
- A. Connes, Noncommutative geometry. Academic Press, Inc., San Diego, CA (1994).
- J. Dubédat, Reflected planar Brownian motions, intertwining relations and crossing probabilities. Ann. Inst. H. Poincaré Probab. Statist.40 (2004) 539–552.
- J. Faraut, Analyse sur les paires de Gelfand, in Analyse harmonique. Les Cours du CIMPA (1982).
- J. Faraut and K. Harzallah, Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier (Grenoble)24 (1974) 171–217.
- B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Math.139 (1977) 95–153.
- F. Hirsch and M. Yor, Fractional intertwinings between two Markov semi-groups. Potential Anal.31 (2009) 133–146.
- H. Matsumoto and M. Yor, An analogue of Pitman's 2M – X theorem for exponential Wiener functionals. Part I. A time-inversion approach. Nagoya Math. J.159 (2000) 125–166.
- N. O'Connell, Directed polymers and the quantum Toda lattice. arXiv:0910.0069
- K.R. Parthasarathy, An introduction to quantum stochastic calculus. Monographs Math.85, Birkhäuser Verlag, Basel (1992).
- J.W. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab.7 (1975) 511–526.