Convergents of folded continued fractions

Jean-Paul Allouche; Anna Lubiw; Michel Mendès France; Alfred J. van der Poorten; Jeffrey Shallit

Acta Arithmetica (1996)

  • Volume: 77, Issue: 1, page 77-96
  • ISSN: 0065-1036

How to cite

top

Jean-Paul Allouche, et al. "Convergents of folded continued fractions." Acta Arithmetica 77.1 (1996): 77-96. <http://eudml.org/doc/206909>.

@article{Jean1996,
author = {Jean-Paul Allouche, Anna Lubiw, Michel Mendès France, Alfred J. van der Poorten, Jeffrey Shallit},
journal = {Acta Arithmetica},
keywords = {continued fraction; convergent; formal Laurent series; formal power series; paperfolding; automatic sequence; convergents; continued fractions},
language = {eng},
number = {1},
pages = {77-96},
title = {Convergents of folded continued fractions},
url = {http://eudml.org/doc/206909},
volume = {77},
year = {1996},
}

TY - JOUR
AU - Jean-Paul Allouche
AU - Anna Lubiw
AU - Michel Mendès France
AU - Alfred J. van der Poorten
AU - Jeffrey Shallit
TI - Convergents of folded continued fractions
JO - Acta Arithmetica
PY - 1996
VL - 77
IS - 1
SP - 77
EP - 96
LA - eng
KW - continued fraction; convergent; formal Laurent series; formal power series; paperfolding; automatic sequence; convergents; continued fractions
UR - http://eudml.org/doc/206909
ER -

References

top
  1. [1] J.-P. Allouche and J. O. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992), 163-187. Zbl0774.68072
  2. [2] E. Artin, Quadratische Körper im Gebiet der höheren Kongruenzen I, II, Math. Z. 19 (1924), 153-246. Reprinted in Collected Papers, pp. 1-104. Zbl50.0107.01
  3. [3] L. E. Baum and M. M. Sweet, Continued fractions of algebraic power series in characteristic 2, Ann. of Math. 103 (1976), 593-610. Zbl0312.10024
  4. [4] A. Blanchard and M. Mendès France, Symétrie et transcendance, Bull. Sci. Math. 106 (1982), 325-335. 
  5. [5] F. M. Dekking, M. Mendès France and A. J. van der Poorten, Folds!, Math. Intelligencer 4 (1982), 130-138, 173-181, 190-195. 
  6. [6] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989. 
  7. [7] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, 1989. Zbl0020.29201
  8. [8] M. Kmošek, Continued fraction expansion of some irrational numbers, Master's thesis, Uniwersytet Warszawski, 1979 (in Polish). 
  9. [9] D. E. Knuth, Seminumerical Algorithms, Vol. II of The Art of Computer Programming, Addison-Wesley, 1981. Zbl0477.65002
  10. [10] G. Köhler, Some more predictable continued fractions, Monatsh. Math. 89 (1980), 95-100. Zbl0419.10010
  11. [11] B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France Suppl. Mém. 21 (1970), 1-93. Zbl0221.10037
  12. [12] M. Mendès France, Principe de la symétrie perturbée, in: M.-J. Bertin (ed.), Séminaire de Théorie des Nombres, Paris 1979-80; Séminaire Delange-Pisot-Poitou, Birkhäuser, 1981, 77-98. 
  13. [13] M. Mendès France and A. J. van der Poorten, Arithmetic and analytic properties of paper folding sequences, Bull. Austral. Math. Soc. 24 (1981), 123-131. Zbl0451.10018
  14. [14] M. Mendès France and A. J. van der Poorten, Some explicit continued fraction expansions, Mathematika 38 (1991), 1-9. 
  15. [15] A. J. van der Poorten and J. O. Shallit, Folded continued fractions, J. Number Theory 40 (1992), 237-250. Zbl0753.11005
  16. [16] J. Roberts, Elementary Number Theory: A Problem Oriented Approach, MIT Press, 1978. 
  17. [17] O. Salon, Suites automatiques à multi-indices et algébricité, C. R. Acad. Sci. Paris 305 (1987), 501-504. Zbl0628.10007
  18. [18] O. Salon, Propriétés arithmétiques des automates multidimensionnels, PhD thesis, Université de Bordeaux I, 1989. 
  19. [19] J. O. Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), 209-217. Zbl0404.10003
  20. [20] J. O. Shallit, Explicit descriptions of some continued fractions, Fibonacci Quart. 20 (1982), 77-81. Zbl0472.10012
  21. [21] J. O. Shallit, Simple continued fractions for some irrational numbers, II, J. Number Theory 14 (1982), 228-231. Zbl0481.10005
  22. [22] N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995. Zbl0845.11001
  23. [23] M. A. Stern, Über eine zahlentheoretische Funktion, J. Reine Angew. Math. 55 (1858), 193-220. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.