Séries de Engel et fractions continuées
Pierre Liardet; Pierre Stambul
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 1, page 37-68
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [A-D-Q-Z] J.-P. Allouche, J.L. Davison, M. (Queffélec, L.Q. Zamboni, Transcendence of sturmian or morphic continued fractions. préprint 1999, pp. 26. Zbl0998.11036
- [A-L-M-P-S] J.-P. Allouche, A. Lubiw, M. Mendès france, A.J. Van der Poorten, J.O. Shallit, Convergents of folded continued fractions. Acta Arithmetica77 (1996), 77-96. Zbl0848.11004MR1404978
- [BI-Me] A. Blanchard, M. Mendès France, Symétrie et transcendance. Bull. Sci. Math.106 (1982), 325-335, Zbl0492.10027MR680277
- [Bo] E. Borel, Sur les développements unitaires normaux. C.R.A.S Paris225 (1947), 773. Zbl0029.15303MR23007
- [Da] J.L. Davison, A class of transcendental numbers with bounded partial quotients. Number Theory and Applications (Banff, AB, 1988) ; NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 265; Kluwer Acad. Publ.Dordrecht (1989), 365-371. Zbl0693.10028MR1123082
- [De-Po-Me] M. Dekking, A.J. van der Poorten, M. MendèsFrance. Folds ! Math. Intell.4 (1982), 130-138, 173-181, 190-195. Zbl0493.10001MR684028
- [E-R-S] P. Erdös, A. Rényi, P. Szüsz, On Engel's and Sylvester series. Ann. Univ. Sci. Budapest, Sectio Math.1 (1957), 7-12. Zbl0107.27002MR102496
- [Kmo] M. Kmosek, Rozwinieçie niektórych liczb niewymiernych na ulamki lancuchowe. Thèse (en polonais), Uniwersytet Warszawski, Varsovie, (1979).
- [Kö] G. Köhler, Some More Predictable Continued Fractions. Mh. Math.89, (1980), 95-100. Zbl0419.10010MR572885
- [La] S. Lang, Diophantine Geometry. Interscience Publishers (1962). Zbl0115.38701MR142550
- [Li-St] P. Liardet, P. Stambul, Algebraic computations with continued fractions. Journal of Number Theory73 (1998), 92-121. Zbl0929.11066MR1654886
- [Lu] E. Lucas, Théorie des Nombres. Gauthier-Villars (1891). JFM23.0174.02
- [Me-Sh] M. Mendès france, J.O. Shallit, Wire Bending. Journal of Combinatorial Theory Series A50 (1989), 1-23. Zbl0663.10056MR978063
- [Pe] O. Perron, Irrationalzahlen. De Gruyter, Berlin et Leipzig, deuxième édition (1939), 116-122. MR115985JFM65.0192.02
- [Qu] M. (Queffélec, Transcendance des fractions continues de Thue-Morse, J. Number Theory73 (1998), 201-211. Zbl0920.11045MR1658023
- [Sc] W. Schmidt, On simultaneous approximations of two algebraic numbers by rationals. Acta Math.119 (1967), 27-50. Zbl0173.04801MR223309
- [Sh1] J.O. Shallit, Real numbers with bounded partial quotients: a survey. The Mathematical Heritage of Friedrich Gauss, G. M. Rassias, editor, World Scientific Publishing (1991) .
- [Sh2] J.O. Shallit, Simple continued fractions for some irrational numbers. J. Number Theory11 (1979), 209-217. Zbl0404.10003MR535392
- [Sh3] J.O. Shallit, Simple continued fractions for some irrational numbers II. J. Number Theory14 (1982), 228-231. Zbl0481.10005MR655726
- [Sh4] J.O. Shallit, Explicit descriptions of some continued fractions. Fibonacci Quart.20 (1982), 77-81. Zbl0472.10012MR660766
- [Si] W. Sierpinski, Elementary Theory of Numbers. Institute of Math. of Polish Acad. of Sciences (1964). Zbl0122.04402MR175840
- [Ta] J. Tamura, Explicit formulae for Cantor series representing quadratic irrationals. Number theory and combinatorics, Japan, World Scientific Publishing Co. (1984), 369-381. Zbl0608.10013MR827796
- [VdP] A.J. Van der Poorten, An introduction to continued fractions. Diophantine Analysis, J.H. Loxton and A.J. van der Poorten, editors, Cambridge University press (1986), 99-138. Zbl0596.10008MR874123