Global function fields with many rational places over the quinary field. II

Harald Niederreiter; Chaoping Xing

Acta Arithmetica (1998)

  • Volume: 86, Issue: 3, page 277-288
  • ISSN: 0065-1036

How to cite

top

Harald Niederreiter, and Chaoping Xing. "Global function fields with many rational places over the quinary field. II." Acta Arithmetica 86.3 (1998): 277-288. <http://eudml.org/doc/207197>.

@article{HaraldNiederreiter1998,
author = {Harald Niederreiter, Chaoping Xing},
journal = {Acta Arithmetica},
keywords = {quinary field; curves with many rational points; global function fields; finite field; many rational places; Hilbert class field; hyperelliptic function field},
language = {eng},
number = {3},
pages = {277-288},
title = {Global function fields with many rational places over the quinary field. II},
url = {http://eudml.org/doc/207197},
volume = {86},
year = {1998},
}

TY - JOUR
AU - Harald Niederreiter
AU - Chaoping Xing
TI - Global function fields with many rational places over the quinary field. II
JO - Acta Arithmetica
PY - 1998
VL - 86
IS - 3
SP - 277
EP - 288
LA - eng
KW - quinary field; curves with many rational points; global function fields; finite field; many rational places; Hilbert class field; hyperelliptic function field
UR - http://eudml.org/doc/207197
ER -

References

top
  1. [1] A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inform. Theory 41 (1995), 1548-1563. Zbl0863.11040
  2. [2] D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1996. Zbl0874.11004
  3. [3] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. Zbl0292.12018
  4. [4] D. R. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, D. Goss, D. R. Hayes, and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1-32. Zbl0793.11015
  5. [5] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. Cohen and H. Niederreiter (eds.), Cambridge Univ. Press, Cambridge, 1996, 269-296. Zbl0932.11050
  6. [6] H. Niederreiter and C. P. Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, Acta Arith. 79 (1997), 59-76. Zbl0891.11057
  7. [7] H. Niederreiter and C. P. Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II, Acta Arith. 81 (1997), 81-100. Zbl0886.11033
  8. [8] H. Niederreiter and C. P. Xing, Global function fields with many rational places over the quinary field, Demonstratio Math. 30 (1997), 919-930. Zbl0958.11075
  9. [9] H. Niederreiter and C. P. Xing, The algebraic-geometry approach to low-discrepancy sequences, in: Monte Carlo and Quasi-Monte Carlo Methods 1996, H. Niederreiter et al. (eds.), Lecture Notes in Statist. 127, Springer, New York, 1998, 139-160. Zbl0884.11031
  10. [10] H. Niederreiter and C. P. Xing, Algebraic curves over finite fields with many rational points, in: Number Theory, K. Győry, A. Pethő, and V. T. Sós (eds.), de Gruyter, Berlin, 1998, 423-443. Zbl0923.11093
  11. [11] H. Niederreiter and C. P. Xing, Global function fields with many rational places and their applications, in: Proc. Finite Fields Conf. (Waterloo, 1997), Contemp. Math., Amer. Math. Soc., Providence, to appear. Zbl0960.11033
  12. [12] H. Niederreiter and C. P. Xing, Nets, (t,s)-sequences, and algebraic geometry, in: Pseudo- and Quasi- Random Point Sets, P. Hellekalek and G. Larcher (eds.), Lecture Notes in Statist., Springer, New York, to appear. 
  13. [13] O. Pretzel, Codes and Algebraic Curves, Oxford Univ. Press, Oxford, 1998. 
  14. [14] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. Zbl0632.12017
  15. [15] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402. Zbl0538.14015
  16. [16] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993. 
  17. [17] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many points, in: Arithmetic Geometry, F. Catanese (ed.), Cambridge Univ. Press, Cambridge, 1997, 169-189. Zbl0884.11027
  18. [18] C. P. Xing and H. Niederreiter, Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651-654. 
  19. [19] C. P. Xing and H. Niederreiter, Drinfeld modules of rank 1 and algebraic curves with many rational points, Monatsh. Math., to appear. Zbl0982.11034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.