Global function fields with many rational places over the quinary field. II
Harald Niederreiter; Chaoping Xing
Acta Arithmetica (1998)
- Volume: 86, Issue: 3, page 277-288
- ISSN: 0065-1036
Access Full Article
topHow to cite
topHarald Niederreiter, and Chaoping Xing. "Global function fields with many rational places over the quinary field. II." Acta Arithmetica 86.3 (1998): 277-288. <http://eudml.org/doc/207197>.
@article{HaraldNiederreiter1998,
author = {Harald Niederreiter, Chaoping Xing},
journal = {Acta Arithmetica},
keywords = {quinary field; curves with many rational points; global function fields; finite field; many rational places; Hilbert class field; hyperelliptic function field},
language = {eng},
number = {3},
pages = {277-288},
title = {Global function fields with many rational places over the quinary field. II},
url = {http://eudml.org/doc/207197},
volume = {86},
year = {1998},
}
TY - JOUR
AU - Harald Niederreiter
AU - Chaoping Xing
TI - Global function fields with many rational places over the quinary field. II
JO - Acta Arithmetica
PY - 1998
VL - 86
IS - 3
SP - 277
EP - 288
LA - eng
KW - quinary field; curves with many rational points; global function fields; finite field; many rational places; Hilbert class field; hyperelliptic function field
UR - http://eudml.org/doc/207197
ER -
References
top- [1] A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inform. Theory 41 (1995), 1548-1563. Zbl0863.11040
- [2] D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1996. Zbl0874.11004
- [3] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. Zbl0292.12018
- [4] D. R. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, D. Goss, D. R. Hayes, and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1-32. Zbl0793.11015
- [5] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. Cohen and H. Niederreiter (eds.), Cambridge Univ. Press, Cambridge, 1996, 269-296. Zbl0932.11050
- [6] H. Niederreiter and C. P. Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, Acta Arith. 79 (1997), 59-76. Zbl0891.11057
- [7] H. Niederreiter and C. P. Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II, Acta Arith. 81 (1997), 81-100. Zbl0886.11033
- [8] H. Niederreiter and C. P. Xing, Global function fields with many rational places over the quinary field, Demonstratio Math. 30 (1997), 919-930. Zbl0958.11075
- [9] H. Niederreiter and C. P. Xing, The algebraic-geometry approach to low-discrepancy sequences, in: Monte Carlo and Quasi-Monte Carlo Methods 1996, H. Niederreiter et al. (eds.), Lecture Notes in Statist. 127, Springer, New York, 1998, 139-160. Zbl0884.11031
- [10] H. Niederreiter and C. P. Xing, Algebraic curves over finite fields with many rational points, in: Number Theory, K. Győry, A. Pethő, and V. T. Sós (eds.), de Gruyter, Berlin, 1998, 423-443. Zbl0923.11093
- [11] H. Niederreiter and C. P. Xing, Global function fields with many rational places and their applications, in: Proc. Finite Fields Conf. (Waterloo, 1997), Contemp. Math., Amer. Math. Soc., Providence, to appear. Zbl0960.11033
- [12] H. Niederreiter and C. P. Xing, Nets, (t,s)-sequences, and algebraic geometry, in: Pseudo- and Quasi- Random Point Sets, P. Hellekalek and G. Larcher (eds.), Lecture Notes in Statist., Springer, New York, to appear.
- [13] O. Pretzel, Codes and Algebraic Curves, Oxford Univ. Press, Oxford, 1998.
- [14] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. Zbl0632.12017
- [15] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402. Zbl0538.14015
- [16] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
- [17] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many points, in: Arithmetic Geometry, F. Catanese (ed.), Cambridge Univ. Press, Cambridge, 1997, 169-189. Zbl0884.11027
- [18] C. P. Xing and H. Niederreiter, Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651-654.
- [19] C. P. Xing and H. Niederreiter, Drinfeld modules of rank 1 and algebraic curves with many rational points, Monatsh. Math., to appear. Zbl0982.11034
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.