Ray class fields of global function fields with many rational places

Roland Auer

Acta Arithmetica (2000)

  • Volume: 95, Issue: 2, page 97-122
  • ISSN: 0065-1036

How to cite

top

Roland Auer. "Ray class fields of global function fields with many rational places." Acta Arithmetica 95.2 (2000): 97-122. <http://eudml.org/doc/207447>.

@article{RolandAuer2000,
author = {Roland Auer},
journal = {Acta Arithmetica},
keywords = {ray class fields; global function fields; characteristic p; curves with many rational points; S-class numbers},
language = {eng},
number = {2},
pages = {97-122},
title = {Ray class fields of global function fields with many rational places},
url = {http://eudml.org/doc/207447},
volume = {95},
year = {2000},
}

TY - JOUR
AU - Roland Auer
TI - Ray class fields of global function fields with many rational places
JO - Acta Arithmetica
PY - 2000
VL - 95
IS - 2
SP - 97
EP - 122
LA - eng
KW - ray class fields; global function fields; characteristic p; curves with many rational points; S-class numbers
UR - http://eudml.org/doc/207447
ER -

References

top
  1. [1] R. Auer, Ray class fields of global function fields with many rational places, Dissertation at the University of Oldenburg, www.bis.uni-oldenburg.de/dissertation/ediss.html, 1999. Zbl0930.11082
  2. [2] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, New York, 1967. Zbl0153.07403
  3. [3] H. Cohen, F. Diaz y Diaz and M. Olivier, Computing ray class groups, conductors and discriminants, in: Algorithmic Number Theory, H. Cohen (ed.), Lecture Notes in Comput. Sci. 1122, Springer, 1996, 49-57. Zbl0898.11046
  4. [4] K M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), 267-283. 
  5. [5] R. Fuhrmann and F. Torres, The genus of curves over finite fields with many rational points, Manuscripta Math. 89 (1996), 103-106. Zbl0857.11032
  6. [6] A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inform. Theory 41 (1995), 1548-1563. Zbl0863.11040
  7. [7] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many points, in: Arithmetic Geometry (Cortona, 1984), F. Catanese (ed.), Cambridge Univ. Press, 1997, 169-189. Zbl0884.11027
  8. [8] G. van der Geer and M. van der Vlugt, Constructing curves over finite fields with many points by solving linear equations, preprint, 1997. Zbl1054.11506
  9. [9] G. van der Geer and M. van der Vlugt, Tables of curves with many points, preprint at http://www.wins.uva.nl/geer, 1999. Zbl0965.11028
  10. [10] H H. Hasse, Number Theory, Springer, Berlin, 1980. 
  11. [11] D. R. Hayes, Explicit class field theory in global function fields, in: Studies in Algebra and Number Theory, Adv. in Math. Suppl. Stud. 6, Academic Press, 1979, 173-217. 
  12. [12] H. Kisilevsky, Multiplicative independence in function fields, J. Number Theory 44 (1993), 352-355. Zbl0780.11058
  13. [13] K. Lauter, Ray class field constructions of curves over finite fields with many rational points, in: Algorithmic Number Theory, H. Cohen (ed.), Lecture Notes in Comput. Sci. 1122, Springer, 1996, 187-195. Zbl0935.11022
  14. [14] K. Lauter, Deligne-Lusztig curves as ray class fields, Manuscripta Math. 98 (1999), 87-96. Zbl0919.11076
  15. [15] K. Lauter, A formula for constructing curves over finite fields with many rational points, J. Number Theory 74 (1999), 56-72. Zbl1044.11054
  16. [16] J. Neukirch, Algebraische Zahlentheorie, Springer, Berlin, 1991. 
  17. [17] H. Niederreiter, Nets, (t,s)-sequences, and algebraic curves over finite fields with many rational points, in: Proc. Internat. Congress of Math. (Berlin, 1998), Documenta Math. Extra Vol. ICM III (1998), 377-386. Zbl0899.11038
  18. [18] H. Niederreiter and C. P. Xing, Explicit global function fields over the binary field with many rational places, Acta Arith. 75 (1996), 383-396. Zbl0877.11065
  19. [19] H. Niederreiter and C. P. Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, ibid. 79 (1997), 59-76. Zbl0891.11057
  20. [20] H. Niederreiter and C. P. Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II, ibid. 81 (1997), 81-100. Zbl0886.11033
  21. [21] H. Niederreiter and C. P. Xing, Algebraic curves over finite fields with many rational points, in: Proc. Number Theory Conf. (Eger, 1996), de Gruyter, 1998, 423-443. Zbl0923.11093
  22. [22] H. Niederreiter and C. P. Xing, Global function fields with many rational places over the ternary field, Acta Arith. 83 (1998), 65-86. Zbl1102.11312
  23. [23] H. Niederreiter and C. P. Xing, Global function fields with many rational places over the quinary field, Demonstratio Math. 30 (1997), 919-930. Zbl0958.11075
  24. [24] H. Niederreiter and C. P. Xing, Global function fields with many rational places over the quinary field. II, Acta Arith. 86 (1998), 277-288. Zbl0922.11098
  25. [25] H. Niederreiter and C. P. Xing, Algebraic curves with many rational points over finite fields of characteristic 2, in: Number Theory in Progress (Zakopane, 1997), Vol. 1, de Gruyter, 1999, 359-380. Zbl0935.11021
  26. [26] H. Niederreiter and C. P. Xing, A general method of constructing global function fields with many rational places, in: Algorithmic Number Theory (Portland, 1998), Lecture Notes in Comput. Sci. 1423, Springer, 1998, 555-566. Zbl0909.11052
  27. [27] H. Niederreiter and C. P. Xing, Algebraic curves over finite fields with many rational points and their applications, in: Number Theory, V. C. Dumir et al. (eds.), Indian National Science Academy, to appear. Zbl0986.11040
  28. [28] H. Niederreiter and C. P. Xing, Global function fields with many rational places and their applications, Contemp. Math. 225 (1999), 87-111. Zbl0960.11033
  29. [29] J. P. Pedersen, A function field related to the Ree group, in: Coding Theory and Algebraic Geometry (Luminy, 1991), H. Stichtenoth and M. A. Tsfasman (eds.), Lecture Notes in Math. 1518, Springer, Berlin, 1992, 122-131. 
  30. [30] M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38 (1991), 300-322. Zbl0741.11044
  31. [31] M. Rosen, S-units and S-class group in algebraic function fields, J. Algebra 26 (1973), 98-108. Zbl0265.12003
  32. [32] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. Zbl0632.12017
  33. [33] R. Schoof, Algebraic Curves and Coding Theory, UTM 336 (1990), Univ. of Trento. 
  34. [34] J.-P. Serre, Sur le nombre des points rationnelles d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I 296 (1983), 397-402. Zbl0538.14015
  35. [35] J.-P. Serre, Nombres de points des courbes algébrique sur q , Sém. Théor. Nombres Bordeaux 22 (1982/83). 
  36. [36] J.-P. Serre, Résumé des cours de 1983-1984, Annuaire du Collège de France, 1984, 79-83. 
  37. [37] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993. 
  38. [38] C. P. Xing and H. Niederreiter, Drinfel'd modules of rank 1 and algebraic curves with many rational points, Monatsh. Math. 127 (1999), 219-241. Zbl0982.11034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.