Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places

Harald Niederreiter; Chaoping Xing

Acta Arithmetica (1997)

  • Volume: 79, Issue: 1, page 59-76
  • ISSN: 0065-1036

How to cite

top

Harald Niederreiter, and Chaoping Xing. "Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places." Acta Arithmetica 79.1 (1997): 59-76. <http://eudml.org/doc/206965>.

@article{HaraldNiederreiter1997,
author = {Harald Niederreiter, Chaoping Xing},
journal = {Acta Arithmetica},
keywords = {cyclotomic function fields; hilbert class fields; rational points; algebraic curves; geometric coding theory; construction of low-discrepancy sequences; global function fields; rational places},
language = {eng},
number = {1},
pages = {59-76},
title = {Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places},
url = {http://eudml.org/doc/206965},
volume = {79},
year = {1997},
}

TY - JOUR
AU - Harald Niederreiter
AU - Chaoping Xing
TI - Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places
JO - Acta Arithmetica
PY - 1997
VL - 79
IS - 1
SP - 59
EP - 76
LA - eng
KW - cyclotomic function fields; hilbert class fields; rational points; algebraic curves; geometric coding theory; construction of low-discrepancy sequences; global function fields; rational places
UR - http://eudml.org/doc/206965
ER -

References

top
  1. [1] L. Carlitz, A class of polynomials, Trans. Amer. Math. Soc. 43 (1938), 167-182. Zbl0018.19806
  2. [2] A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math. 121 (1995), 211-222. Zbl0822.11078
  3. [3] A. Garcia and H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, J. Number Theory, to appear. Zbl0893.11047
  4. [4] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. Zbl0292.12018
  5. [5] D. R. Hayes, Stickelberger elements in function fields, Compositio Math. 55 (1985), 209-239. Zbl0569.12008
  6. [6] D. R. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, D. Goss, D. R. Hayes and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1-32. Zbl0793.11015
  7. [7] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721-724. Zbl0509.14019
  8. [8] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, revised ed., Cambridge University Press, Cambridge, 1994. Zbl0820.11072
  9. [9] H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 2 (1996), 241-273. 
  10. [10] H. Niederreiter and C. P. Xing, Explicit global function fields over the binary field with many rational places, Acta Arith. 75 (1996), 383-396. Zbl0877.11065
  11. [11] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. D. Cohen and H. Niederreiter (eds.), Cambridge University Press, Cambridge, 1996, 269-296. Zbl0932.11050
  12. [12] M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38 (1991), 300-322. Zbl0741.11044
  13. [13] H.-G. Quebbemann, Cyclotomic Goppa codes, IEEE Trans. Inform. Theory 34 (1988), 1317-1320. Zbl0665.94014
  14. [14] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. Zbl0632.12017
  15. [15] R. Schoof, Algebraic curves over 𝔽₂ with many rational points, J. Number Theory 41 (1992), 6-14. Zbl0762.11026
  16. [16] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402. Zbl0538.14015
  17. [17] J.-P. Serre, Nombres de points des courbes algébriques sur q , Sém. Théorie des Nombres 1982-1983, Exp. 22, Univ. de Bordeaux I, Talence, 1983. 
  18. [18] J.-P. Serre, Résumé des cours de 1983-1984, Annuaire du Collège de France (1984), 79-83. 
  19. [19] J.-P. Serre, Rational Points on Curves over Finite Fields, lecture notes, Harvard University, 1985. 
  20. [20] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993. 
  21. [21] M. A. Tsfasman and S. G. Vlădut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991. Zbl0727.94007
  22. [22] G. van der Geer and M. van der Vlugt, Curves over finite fields of characteristic 2 with many rational points, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 593-597. Zbl0787.14033
  23. [23] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many rational points, preprint, 1995. Zbl0884.11027
  24. [24] C. Voß and T. Høholdt, A family of Kummer extensions of the Hermitian function field, Comm. Algebra 23 (1995), 1551-1566. Zbl0827.11072
  25. [25] C. P. Xing, Multiple Kummer extension and the number of prime divisors of degree one in function fields, J. Pure Appl. Algebra 84 (1993), 85-93. Zbl0776.11068
  26. [26] C. P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith. 73 (1995), 87-102. 
  27. [27] C. P. Xing and H. Niederreiter, Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651-654. 
  28. [28] C. P. Xing and H. Niederreiter, Drinfeld modules of rank 1 and algebraic curves with many rational points, preprint, 1996. Zbl0853.11051

NotesEmbed ?

top

You must be logged in to post comments.