Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places

Harald Niederreiter; Chaoping Xing

Acta Arithmetica (1997)

  • Volume: 79, Issue: 1, page 59-76
  • ISSN: 0065-1036

How to cite

top

Harald Niederreiter, and Chaoping Xing. "Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places." Acta Arithmetica 79.1 (1997): 59-76. <http://eudml.org/doc/206965>.

@article{HaraldNiederreiter1997,
author = {Harald Niederreiter, Chaoping Xing},
journal = {Acta Arithmetica},
keywords = {cyclotomic function fields; hilbert class fields; rational points; algebraic curves; geometric coding theory; construction of low-discrepancy sequences; global function fields; rational places},
language = {eng},
number = {1},
pages = {59-76},
title = {Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places},
url = {http://eudml.org/doc/206965},
volume = {79},
year = {1997},
}

TY - JOUR
AU - Harald Niederreiter
AU - Chaoping Xing
TI - Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places
JO - Acta Arithmetica
PY - 1997
VL - 79
IS - 1
SP - 59
EP - 76
LA - eng
KW - cyclotomic function fields; hilbert class fields; rational points; algebraic curves; geometric coding theory; construction of low-discrepancy sequences; global function fields; rational places
UR - http://eudml.org/doc/206965
ER -

References

top
  1. [1] L. Carlitz, A class of polynomials, Trans. Amer. Math. Soc. 43 (1938), 167-182. Zbl0018.19806
  2. [2] A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math. 121 (1995), 211-222. Zbl0822.11078
  3. [3] A. Garcia and H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, J. Number Theory, to appear. Zbl0893.11047
  4. [4] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. Zbl0292.12018
  5. [5] D. R. Hayes, Stickelberger elements in function fields, Compositio Math. 55 (1985), 209-239. Zbl0569.12008
  6. [6] D. R. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, D. Goss, D. R. Hayes and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1-32. Zbl0793.11015
  7. [7] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721-724. Zbl0509.14019
  8. [8] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, revised ed., Cambridge University Press, Cambridge, 1994. Zbl0820.11072
  9. [9] H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 2 (1996), 241-273. 
  10. [10] H. Niederreiter and C. P. Xing, Explicit global function fields over the binary field with many rational places, Acta Arith. 75 (1996), 383-396. Zbl0877.11065
  11. [11] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. D. Cohen and H. Niederreiter (eds.), Cambridge University Press, Cambridge, 1996, 269-296. Zbl0932.11050
  12. [12] M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38 (1991), 300-322. Zbl0741.11044
  13. [13] H.-G. Quebbemann, Cyclotomic Goppa codes, IEEE Trans. Inform. Theory 34 (1988), 1317-1320. Zbl0665.94014
  14. [14] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. Zbl0632.12017
  15. [15] R. Schoof, Algebraic curves over 𝔽₂ with many rational points, J. Number Theory 41 (1992), 6-14. Zbl0762.11026
  16. [16] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402. Zbl0538.14015
  17. [17] J.-P. Serre, Nombres de points des courbes algébriques sur q , Sém. Théorie des Nombres 1982-1983, Exp. 22, Univ. de Bordeaux I, Talence, 1983. 
  18. [18] J.-P. Serre, Résumé des cours de 1983-1984, Annuaire du Collège de France (1984), 79-83. 
  19. [19] J.-P. Serre, Rational Points on Curves over Finite Fields, lecture notes, Harvard University, 1985. 
  20. [20] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993. 
  21. [21] M. A. Tsfasman and S. G. Vlădut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991. Zbl0727.94007
  22. [22] G. van der Geer and M. van der Vlugt, Curves over finite fields of characteristic 2 with many rational points, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 593-597. Zbl0787.14033
  23. [23] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many rational points, preprint, 1995. Zbl0884.11027
  24. [24] C. Voß and T. Høholdt, A family of Kummer extensions of the Hermitian function field, Comm. Algebra 23 (1995), 1551-1566. Zbl0827.11072
  25. [25] C. P. Xing, Multiple Kummer extension and the number of prime divisors of degree one in function fields, J. Pure Appl. Algebra 84 (1993), 85-93. Zbl0776.11068
  26. [26] C. P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith. 73 (1995), 87-102. 
  27. [27] C. P. Xing and H. Niederreiter, Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651-654. 
  28. [28] C. P. Xing and H. Niederreiter, Drinfeld modules of rank 1 and algebraic curves with many rational points, preprint, 1996. Zbl0853.11051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.