Drinfeld modules of rank 1 and algebraic curves with many rational points. II

Harald Niederreiter; Chaoping Xing

Acta Arithmetica (1997)

  • Volume: 81, Issue: 1, page 81-100
  • ISSN: 0065-1036

How to cite

top

Harald Niederreiter, and Chaoping Xing. "Drinfeld modules of rank 1 and algebraic curves with many rational points. II." Acta Arithmetica 81.1 (1997): 81-100. <http://eudml.org/doc/207057>.

@article{HaraldNiederreiter1997,
author = {Harald Niederreiter, Chaoping Xing},
journal = {Acta Arithmetica},
keywords = {Drinfeld modules of rank 1; algebraic curves; many rational points; finite field},
language = {eng},
number = {1},
pages = {81-100},
title = {Drinfeld modules of rank 1 and algebraic curves with many rational points. II},
url = {http://eudml.org/doc/207057},
volume = {81},
year = {1997},
}

TY - JOUR
AU - Harald Niederreiter
AU - Chaoping Xing
TI - Drinfeld modules of rank 1 and algebraic curves with many rational points. II
JO - Acta Arithmetica
PY - 1997
VL - 81
IS - 1
SP - 81
EP - 100
LA - eng
KW - Drinfeld modules of rank 1; algebraic curves; many rational points; finite field
UR - http://eudml.org/doc/207057
ER -

References

top
  1. [1] A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math. 121 (1995), 211-222. Zbl0822.11078
  2. [2] A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inform. Theory 41 (1995), 1548-1563. Zbl0863.11040
  3. [3] A. Garcia and H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, J. Number Theory 61 (1996), 248-273. Zbl0893.11047
  4. [4] D. R. Hayes, Stickelberger elements in function fields, Compositio Math. 55 (1985), 209-239. Zbl0569.12008
  5. [5] D. R. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, D. Goss, D. R. Hayes, and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1-32. Zbl0793.11015
  6. [6] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721-724. Zbl0509.14019
  7. [7] H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 2 (1996), 241-273. 
  8. [8] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. D. Cohen and H. Niederreiter (eds.), Cambridge University Press, Cambridge, 1996, 269-296. Zbl0932.11050
  9. [9] H. Niederreiter and C. P. Xing, Explicit global function fields over the binary field with many rational places, Acta Arith. 75 (1996), 383-396. Zbl0877.11065
  10. [10] H. Niederreiter and C. P. Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, Acta Arith. 79 (1997), 59-76. Zbl0891.11057
  11. [11] M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38 (1991), 300-322. Zbl0741.11044
  12. [12] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. Zbl0632.12017
  13. [13] R. Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987), 183-211. Zbl0632.14021
  14. [14] R. Schoof, Algebraic curves over 𝔽₂ with many rational points, J. Number Theory 41 (1992), 6-14. Zbl0762.11026
  15. [15] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402. Zbl0538.14015
  16. [16] J.-P. Serre, Nombres de points des courbes algébriques sur q , in: Sém. Théorie des Nombres 1982-1983, Exp. 22, Univ. de Bordeaux I, Talence, 1983. 
  17. [17] J.-P. Serre, Résumé des cours de 1983-1984, Annuaire du Collège de France (1984), 79-83. 
  18. [18] J.-P. Serre, Rational Points on Curves over Finite Fields, lecture notes, Harvard University, 1985. 
  19. [19] J.-P. Serre, Personal communication, September 1995. 
  20. [20] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986. Zbl0585.14026
  21. [21] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993. 
  22. [22] M. A. Tsfasman and S. G. Vlǎdut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991. Zbl0727.94007
  23. [23] G. van der Geer and M. van der Vlugt, Curves over finite fields of characteristic 2 with many rational points, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 593-597. Zbl0787.14033
  24. [24] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many rational points, in: Proc. Conf. Algebraic Geometry (Cortona, 1995), to appear. Zbl0884.11027
  25. [25] W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Ecole Norm. Sup. (4) 2 (1969), 521-560. Zbl0188.53001
  26. [26] C. P. Xing, Multiple Kummer extension and the number of prime divisors of degree one in function fields, J. Pure Appl. Algebra 84 (1993), 85-93. Zbl0776.11068
  27. [27] C. P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith. 73 (1995), 87-102. 
  28. [28] C. P. Xing and H. Niederreiter, Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651-654. 
  29. [29] C. P. Xing and H. Niederreiter, Drinfeld modules of rank 1 and algebraic curves with many rational points, preprint, 1996. Zbl0853.11051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.