Displaying similar documents to “Lipschitz continuity of densities of stable semigroups of measures”

Decomposition and disintegration of positive definite kernels on convex *-semigroups

Jan Stochel (1992)

Annales Polonici Mathematici

Similarity:

The paper deals with operator-valued positive definite kernels on a convex *-semigroup whose Kolmogorov-Aronszajn type factorizations induce *-semigroups of bounded shift operators. Any such kernel Φ has a canonical decomposition into a degenerate and a nondegenerate part. In case is commutative, Φ can be disintegrated with respect to some tight positive operator-valued measure defined on the characters of if and only if Φ is nondegenerate. It is proved that a representing measure of...

On positive Rockland operators

Pascal Auscher, A. ter Elst, Derek Robinson (1994)

Colloquium Mathematicae

Similarity:

Let G be a homogeneous Lie group with a left Haar measure dg and L the action of G as left translations on L p ( G ; d g ) . Further, let H = dL(C) denote a homogeneous operator associated with L. If H is positive and hypoelliptic on L 2 we prove that it is closed on each of the L p -spaces, p ∈ 〈 1,∞〉, and that it generates a semigroup S with a smooth kernel K which, with its derivatives, satisfies Gaussian bounds. The semigroup is holomorphic in the open right half-plane on all the L p -spaces, p ∈ [1,∞]....