The Fatou theorem for NA groups - a negative result

Jarosław Sołowiej

Colloquium Mathematicae (1994)

  • Volume: 67, Issue: 1, page 131-145
  • ISSN: 0010-1354

How to cite

top

Sołowiej, Jarosław. "The Fatou theorem for NA groups - a negative result." Colloquium Mathematicae 67.1 (1994): 131-145. <http://eudml.org/doc/210256>.

@article{Sołowiej1994,
author = {Sołowiej, Jarosław},
journal = {Colloquium Mathematicae},
keywords = {Fatou theorem; homogeneous Lie group; Poisson integral; solvable groups; nilpotent Lie group; Abelian Lie group; subelliptic operator; Lie algebra; probability measure; harmonic function; admissible convergence; boundary},
language = {eng},
number = {1},
pages = {131-145},
title = {The Fatou theorem for NA groups - a negative result},
url = {http://eudml.org/doc/210256},
volume = {67},
year = {1994},
}

TY - JOUR
AU - Sołowiej, Jarosław
TI - The Fatou theorem for NA groups - a negative result
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 1
SP - 131
EP - 145
LA - eng
KW - Fatou theorem; homogeneous Lie group; Poisson integral; solvable groups; nilpotent Lie group; Abelian Lie group; subelliptic operator; Lie algebra; probability measure; harmonic function; admissible convergence; boundary
UR - http://eudml.org/doc/210256
ER -

References

top
  1. [Br] L. R. Bragg, Hypergeometric operator series and related partial differential equations, Trans. Amer. Math. Soc. 143 (1969), 319-336. Zbl0195.10803
  2. [D] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, Studia Math. 89 (1988), 169-196. Zbl0675.22005
  3. [DH1] E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on semidirect products of nilpotent and abelian groups, J. Reine Angew. Math. 411 (1990), 1-38. Zbl0699.22012
  4. [DH2] E. Damek and A. Hulanicki, Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group, Studia Math. 101 (1991), 34-68. Zbl0811.43001
  5. [DH3] E. Damek and A. Hulanicki, Boundaries and the Fatou theorem for subelliptic second order operators on solvable Lie groups, ibid., to appear. Zbl0839.22008
  6. [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. Zbl0508.42025
  7. [G] M. de Guzmán, Differentiation of Integrals in R n , Lecture Notes in Math. 481, Springer, 1975. Zbl0327.26010
  8. [H1] A. Hulanicki, Subalgebra of L 1 ( G ) associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. Zbl0316.43005
  9. [H2] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101. 
  10. [Sch] I. J. Schoenberg, On the Besicovitch-Perron solution of the Kakeya problem, in: Studies in Mathematical Analysis and Related Topics, G. Szegö et al. (eds.), Stanford Univ. Press, 1962, 359-363. 
  11. [SW] E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 35-54. Zbl0182.10801

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.