Asymptotic Properties of Stochastic Semilinear Equations by the Method of Lower Measures
Colloquium Mathematicae (1997)
- Volume: 72, Issue: 1, page 147-171
- ISSN: 0010-1354
Access Full Article
topHow to cite
topMaslowski, B., and Simão, I.. "Asymptotic Properties of Stochastic Semilinear Equations by the Method of Lower Measures." Colloquium Mathematicae 72.1 (1997): 147-171. <http://eudml.org/doc/210450>.
@article{Maslowski1997,
author = {Maslowski, B., Simão, I.},
journal = {Colloquium Mathematicae},
keywords = {invariant measures; mixing; stochastic semilinear equations; ergodicity},
language = {eng},
number = {1},
pages = {147-171},
title = {Asymptotic Properties of Stochastic Semilinear Equations by the Method of Lower Measures},
url = {http://eudml.org/doc/210450},
volume = {72},
year = {1997},
}
TY - JOUR
AU - Maslowski, B.
AU - Simão, I.
TI - Asymptotic Properties of Stochastic Semilinear Equations by the Method of Lower Measures
JO - Colloquium Mathematicae
PY - 1997
VL - 72
IS - 1
SP - 147
EP - 171
LA - eng
KW - invariant measures; mixing; stochastic semilinear equations; ergodicity
UR - http://eudml.org/doc/210450
ER -
References
top- [1] L. Arnold, R. F. Curtain and P. Kotelenez, Nonlinear stochastic evolution equations in Hilbert space, Report no. 17, Forschungsschwerpunkt Dynamische Systeme, Universität Bremen 1980.
- [2] A. Chojnowska-Michalik and B. Gołdys, Existence, uniqueness and invariant measures for stochastic semilinear equations on Hilbert spaces, Probab. Theory Related Fields 102 (1995), 331-356.
- [3] G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation, preprint Scuola Normale Superiore Pisa no. 5/1994.
- [4] G. Da Prato, D. Elworthy and J. Zabczyk, Strong Feller property for stochastic semilinear equations, Stochastic Anal. Appl. 13 (1993), 35-45. Zbl0817.60081
- [5] G. Da Prato and D. Gątarek, Stochastic Burgers equation with correlated noise, Stochastics Stochastics Rep. 52 (1995), 29-41. Zbl0853.35138
- [6] G. Da Prato, D. Gątarek and J. Zabczyk, Invariant measures for semilinear stochastic equations, Stochastic Anal. Appl. 10 (1992), 387-408. Zbl0758.60057
- [7] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. Zbl0761.60052
- [8] G. Da Prato and J. Zabczyk, Non-explosion, boundedness and ergodicity for stochastic semilinear equations, J. Differential Equations 98 (1992), 181-195. Zbl0762.60052
- [9] F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Comm. Math. Phys. 171 (1995), 119-141. Zbl0845.35080
- [10] A. Friedman, Stochastic Differential Equations and Applications, Vol. I, Academic Press, New York, 1975. Zbl0323.60056
- [11] M. Fuhrman, Densities of Gaussian measures and regularity of non-symmetric Ornstein-Uhlenbeck semigroups in Hilbert spaces, IMPAN, Warszawa, Preprint 528 (1994).
- [12] D. Fujiwara, Concrete characterization of the domain of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad. Ser. A Math. Sci. 43 (1967), 82-86. Zbl0154.16201
- [13] D. Gątarek and B. Gołdys, On solving stochastic equation by the change of drift with application to optimal control, in: Stochastic PDE's and Applications, Proceedings, Pitman, 1992, 180-190. Zbl0797.60047
- [14] D. Gątarek and B. Gołdys, On invariant measures for diffusions on Banach spaces, Potential Anal., to appear. Zbl0894.60057
- [15] B. Gołdys, On some regularity properties of solutions to stochastic evolution equations in Hilbert spaces, Colloq. Math. 58 (1990), 327-338. Zbl0704.60059
- [16] S. Jacquot and G. Royer, Ergodicity of stochastic plates, Probab. Theory Related Fields, submitted. Zbl0822.60053
- [17] S. Jacquot and G. Royer, Ergodicité d'une classe d'équations aux dérivées partielles stochastiques, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 231-236.
- [18] G. Kallianpur, Zero-one laws for Gaussian processes, Trans. Amer. Math. Soc. 149 (1970), 199-211. Zbl0234.60032
- [19] R. Z. Khas'minskiĭ, Ergodic properties of recurrent diffusion processes and stabilization of the solutions to the Cauchy problem for parabolic equations, Theory Probab. Appl. 5 (1960), 179-196.
- [20] P. Kotelenez, A maximal inequality for stochastic convolution integrals on Hilbert spaces and space-time regularity of linear stochastic partial differential equations, Stochastics 21 (1987), 345-358. Zbl0622.60065
- [21] A. Lasota, Statistical stability of deterministic systems, in: Proceedings Würzburg 1982, Lecture Notes in Math. 1017, Springer, Berlin, 1983, 386-419. Zbl0532.47027
- [22] A. Lasota and M. C. Mackey, Chaos, fractals, and noise, Springer, New York, 1994. Zbl0784.58005
- [23] A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384. Zbl0524.28021
- [24] G. Leha and G. Ritter, Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces, Stochastics Stochastics Rep. 48 (1994), 195-225. Zbl0828.60063
- [25] R. Manthey and B. Maslowski, Qualitative behaviour of solutions of stochastic reaction-diffusion equations, Stochastic Process. Appl. 43 (1992), 265-289. Zbl0761.60055
- [26] B. Maslowski, On probability distributions of solutions of semilinear stochastic evolution equations, Stochastics Stochastics Rep. 45 (1993), 17-44. Zbl0792.60058
- [27] B. Maslowski, An application of l-condition in the theory of stochastic differential equations, Časopis Pěst. Mat. 112 (1987), 296-307. Zbl0645.60063
- [28] B. Maslowski, Strong Feller property for semilinear stochastic evolution equations and applications, in: Proc. Jabłonna 1988, Lecture Notes in Control and Inform. Sci. 136, Springer, Berlin, 1989, 210-225.
- [29] B. Maslowski and J. Seidler, Ergodic properties of recurrent solutions of stochastic evolution equations, Osaka J. Math. 31 (1994), 965-1003. Zbl0820.60040
- [30] S. Peszat and J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab. 23 (1995), 157-172. Zbl0831.60083
- [31] J. Seidler, Da Prato-Zabczyk's maximal inequality revisited I, Math. Bohem. 118 (1993), 67-106. Zbl0785.35115
- [32] J. Seidler, Ergodic behaviour of stochastic parabolic equations, Czechoslovak Math. J., to appear. Zbl0935.60041
- [33] I. Simão, Regular transition densities for infinite dimensional diffusions, Stochastic Anal. Appl. 11 (1993), 309-336. Zbl0777.60076
- [34] I. Simão, A conditioned Ornstein-Uhlenbeck process on a Hilbert space, ibid. 9 (1991), 85-98. Zbl0722.60052
- [35] I. Simão, Pinned Ornstein-Uhlenbeck processes on an infinite dimensional space, Preprint CMAF, University of Lisbon, 1995. Zbl0945.60079
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.