Page 1 Next

## Displaying 1 – 20 of 40

Showing per page

Semigroup forum

### A finite word poset.

The Electronic Journal of Combinatorics [electronic only]

### A note on tolerance lattices of finite chains

Časopis pro pěstování matematiky

### A solution of Dedekind's problem on the number of isotone Boolean functions.

Journal für die reine und angewandte Mathematik

### A visual approach to test lattices

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Let $p$ be a $k$-ary lattice term. A $k$-pointed lattice $L=\left(L;\vee ,\wedge$, ${d}_{1},...,{d}_{k}\right)$ will be called a $p$-lattice (or a test lattice if $p$ is not specified), if $\left(L;\vee ,\wedge \right)$ is generated by $\left\{{d}_{1},...,{d}_{k}\right\}$ and, in addition, for any $k$-ary lattice term $q$ satisfying $p\left({d}_{1},...,{d}_{k}\right)$$\le$$q\left({d}_{1}$, $...,{d}_{k}\right)$ in $L$, the lattice identity $p\le q$ holds in all lattices. In an elementary visual way, we construct a finite $p$-lattice $L\left(p\right)$ for each $p$. If $p$ is a canonical lattice term,...

### Categories of orthomodular posets

Mathematica Slovaca

### Congruence lattices of free lattices in non-distributive varieties

Colloquium Mathematicae

### Free bounded distributive lattice over finite ordered sets and their skeletons.

Acta Mathematica Universitatis Comenianae. New Series

### Free lattices over halflattices

Commentationes Mathematicae Universitatis Carolinae

### Free $𝔪$-products of lattices. I

Colloquium Mathematicae

### Free $𝔪$-products of lattices. II

Colloquium Mathematicae

### Free products of lattices

Fundamenta Mathematicae

### Freely adjoining a complement to a lattice

Mathematica Slovaca

### Konvexita (1. část)

Pokroky matematiky, fyziky a astronomie

### Lattices freely generated by partially ordered sets: which can be "drawn"?

Journal für die reine und angewandte Mathematik

### $𝔪$-poproduct of lattices

Mathematica Slovaca

Semigroup forum

Kybernetika

### On the Word Problem for the Modular Lattice with Four Free Generators.

Mathematische Annalen

### Perfect Elements in the Free Modular Lattices.

Mathematische Annalen

Page 1 Next