A function space Cp(X) not linearly homeomorphic to Cp(X) × ℝ
Fundamenta Mathematicae (1997)
- Volume: 153, Issue: 2, page 125-40
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topMarciszewski, Witold. "A function space Cp(X) not linearly homeomorphic to Cp(X) × ℝ." Fundamenta Mathematicae 153.2 (1997): 125-40. <http://eudml.org/doc/212217>.
@article{Marciszewski1997,
abstract = {We construct two examples of infinite spaces X such that there is no continuous linear surjection from the space of continuous functions $c_p(X)$ onto $c_p(X)$ × ℝ$. In particular, $cp(X)$ is not linearly homeomorphic to $cp(X)$ × ℝ$. One of these examples is compact. This answers some questions of Arkhangel’skiĭ.},
author = {Marciszewski, Witold},
journal = {Fundamenta Mathematicae},
keywords = {function space; pointwise convergence topology; $c_p(X)$; linear homeomorphism; continuous linear surjection},
language = {eng},
number = {2},
pages = {125-40},
title = {A function space Cp(X) not linearly homeomorphic to Cp(X) × ℝ},
url = {http://eudml.org/doc/212217},
volume = {153},
year = {1997},
}
TY - JOUR
AU - Marciszewski, Witold
TI - A function space Cp(X) not linearly homeomorphic to Cp(X) × ℝ
JO - Fundamenta Mathematicae
PY - 1997
VL - 153
IS - 2
SP - 125
EP - 40
AB - We construct two examples of infinite spaces X such that there is no continuous linear surjection from the space of continuous functions $c_p(X)$ onto $c_p(X)$ × ℝ$. In particular, $cp(X)$ is not linearly homeomorphic to $cp(X)$ × ℝ$. One of these examples is compact. This answers some questions of Arkhangel’skiĭ.
LA - eng
KW - function space; pointwise convergence topology; $c_p(X)$; linear homeomorphism; continuous linear surjection
UR - http://eudml.org/doc/212217
ER -
References
top- [Ar1] A. V. Arkhangel'skiĭ, Linear homeomorphisms of function spaces, Soviet Math. Dokl. 25 (3) (1982), 852-855.
- [Ar2] A. V. Arkhangel’skiĭ, A survey of -theory, Questions Answers Gen. Topology 5 (1987), 1-109.
- [Ar3] A. V. Arkhangel’skiĭ, Problems in -Theory, in: Open Problems in Topology, North-Holland, 1990, 601-615.
- [Ar4] A. V. Arkhangel’skiĭ, -theory, in: Recent Progress in General Topology, North-Holland, 1992, 1-56.
- [BdG] J. Baars and J. de Groot, On Topological and Linear Equivalence of Certain Function Spaces, CWI Tract 86, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1992.
- [Ber] Yu. F. Bereznitskiĭ, Nonhomeomorphism between two bicompacta, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 26 (6) (1971), 8-10 (in Russian).
- [Be] C. Bessaga, A Lipschitz invariant of normed linear spaces related to the entropy numbers, Rocky Mountain J. Math. 10 (1980), 81-84. Zbl0432.46020
- [BPR] C. Bessaga, A. Pełczyński and S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 677-683. Zbl0109.33502
- [Du] E. Dubinsky, Every separable Fréchet space contains a non-stable dense subspace, Studia Math. 40 (1971), 77-79. Zbl0219.46017
- [Go] W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530. Zbl0838.46011
- [GM] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874. Zbl0827.46008
- [Gu] S. P. Gul'ko, Spaces of continuous functions on ordinals and ultrafilters, Mat. Zametki 47 (4) (1990), 26-34 (in Russian).
- [Kun] K. Kunen, Weak P-points in N*, in: Colloq. Math. Soc. János Bolyai 23, North-Holland, 1978, 741-749.
- [Ku] K. Kuratowski, Sur la puissance de l'ensemble des "nombres de dimension" au sens de M. Fréchet, Fund. Math. 8 (1926), 201-208. Zbl52.0588.01
- [KS] K. Kuratowski et W. Sierpiński, Sur un problème de M. Fréchet concernant les dimensions des ensembles linéaires, Fund. Math. 8 (1926), 193-200.
- [Ma1] W. Marciszewski, A pre-Hilbert space without any continuous map onto its own square, Bull. Polish Acad. Sci. Math. 31 (1983), 393-397.
- [Ma2] W. Marciszewski, A function space C(K) not weakly homeomorphic to C(K) × C(K), Studia Math. 88 (1988), 129-137. Zbl0666.46022
- [Ma3] W. Marciszewski, On van Mill’s example of a normed X with , preprint.
- [vM1] J. van Mill, An introduction to ℝ, in: Handbook of Set-Theoretic Topology, North-Holland, 1984, 503-567.
- [vM2] J. van Mill, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 101 (1987), 173-180. Zbl0627.57016
- [Po1] R. Pol, An infinite-dimensional pre-Hilbert space not homeomorphic to its own square, Proc. Amer. Math. Soc. 90 (1984), 450-454. Zbl0528.54032
- [Po2] R. Pol, On metrizable E with , Mathematika 42 (1995), 49-55.
- [Ro] S. Rolewicz, An example of a normed space non-isomorphic to its product by the real line, Studia Math. 40 (1971), 71-75. Zbl0219.46016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.