A function space Cp(X) not linearly homeomorphic to Cp(X) × ℝ

Witold Marciszewski

Fundamenta Mathematicae (1997)

  • Volume: 153, Issue: 2, page 125-40
  • ISSN: 0016-2736

Abstract

top
We construct two examples of infinite spaces X such that there is no continuous linear surjection from the space of continuous functions c p ( X ) onto c p ( X ) × ℝ . I n p a r t i c u l a r , cp(X) i s n o t l i n e a r l y h o m e o m o r p h i c t o cp(X) × . One of these examples is compact. This answers some questions of Arkhangel’skiĭ.

How to cite

top

Marciszewski, Witold. "A function space Cp(X) not linearly homeomorphic to Cp(X) × ℝ." Fundamenta Mathematicae 153.2 (1997): 125-40. <http://eudml.org/doc/212217>.

@article{Marciszewski1997,
abstract = {We construct two examples of infinite spaces X such that there is no continuous linear surjection from the space of continuous functions $c_p(X)$ onto $c_p(X)$ × ℝ$. In particular, $cp(X)$ is not linearly homeomorphic to $cp(X)$ × ℝ$. One of these examples is compact. This answers some questions of Arkhangel’skiĭ.},
author = {Marciszewski, Witold},
journal = {Fundamenta Mathematicae},
keywords = {function space; pointwise convergence topology; $c_p(X)$; linear homeomorphism; continuous linear surjection},
language = {eng},
number = {2},
pages = {125-40},
title = {A function space Cp(X) not linearly homeomorphic to Cp(X) × ℝ},
url = {http://eudml.org/doc/212217},
volume = {153},
year = {1997},
}

TY - JOUR
AU - Marciszewski, Witold
TI - A function space Cp(X) not linearly homeomorphic to Cp(X) × ℝ
JO - Fundamenta Mathematicae
PY - 1997
VL - 153
IS - 2
SP - 125
EP - 40
AB - We construct two examples of infinite spaces X such that there is no continuous linear surjection from the space of continuous functions $c_p(X)$ onto $c_p(X)$ × ℝ$. In particular, $cp(X)$ is not linearly homeomorphic to $cp(X)$ × ℝ$. One of these examples is compact. This answers some questions of Arkhangel’skiĭ.
LA - eng
KW - function space; pointwise convergence topology; $c_p(X)$; linear homeomorphism; continuous linear surjection
UR - http://eudml.org/doc/212217
ER -

References

top
  1. [Ar1] A. V. Arkhangel'skiĭ, Linear homeomorphisms of function spaces, Soviet Math. Dokl. 25 (3) (1982), 852-855. 
  2. [Ar2] A. V. Arkhangel’skiĭ, A survey of C p -theory, Questions Answers Gen. Topology 5 (1987), 1-109. 
  3. [Ar3] A. V. Arkhangel’skiĭ, Problems in C p -Theory, in: Open Problems in Topology, North-Holland, 1990, 601-615. 
  4. [Ar4] A. V. Arkhangel’skiĭ, C p -theory, in: Recent Progress in General Topology, North-Holland, 1992, 1-56. 
  5. [BdG] J. Baars and J. de Groot, On Topological and Linear Equivalence of Certain Function Spaces, CWI Tract 86, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1992. 
  6. [Ber] Yu. F. Bereznitskiĭ, Nonhomeomorphism between two bicompacta, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 26 (6) (1971), 8-10 (in Russian). 
  7. [Be] C. Bessaga, A Lipschitz invariant of normed linear spaces related to the entropy numbers, Rocky Mountain J. Math. 10 (1980), 81-84. Zbl0432.46020
  8. [BPR] C. Bessaga, A. Pełczyński and S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 677-683. Zbl0109.33502
  9. [Du] E. Dubinsky, Every separable Fréchet space contains a non-stable dense subspace, Studia Math. 40 (1971), 77-79. Zbl0219.46017
  10. [Go] W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530. Zbl0838.46011
  11. [GM] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874. Zbl0827.46008
  12. [Gu] S. P. Gul'ko, Spaces of continuous functions on ordinals and ultrafilters, Mat. Zametki 47 (4) (1990), 26-34 (in Russian). 
  13. [Kun] K. Kunen, Weak P-points in N*, in: Colloq. Math. Soc. János Bolyai 23, North-Holland, 1978, 741-749. 
  14. [Ku] K. Kuratowski, Sur la puissance de l'ensemble des "nombres de dimension" au sens de M. Fréchet, Fund. Math. 8 (1926), 201-208. Zbl52.0588.01
  15. [KS] K. Kuratowski et W. Sierpiński, Sur un problème de M. Fréchet concernant les dimensions des ensembles linéaires, Fund. Math. 8 (1926), 193-200. 
  16. [Ma1] W. Marciszewski, A pre-Hilbert space without any continuous map onto its own square, Bull. Polish Acad. Sci. Math. 31 (1983), 393-397. 
  17. [Ma2] W. Marciszewski, A function space C(K) not weakly homeomorphic to C(K) × C(K), Studia Math. 88 (1988), 129-137. Zbl0666.46022
  18. [Ma3] W. Marciszewski, On van Mill’s example of a normed X with X X × , preprint. 
  19. [vM1] J. van Mill, An introduction to ℝ, in: Handbook of Set-Theoretic Topology, North-Holland, 1984, 503-567. 
  20. [vM2] J. van Mill, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 101 (1987), 173-180. Zbl0627.57016
  21. [Po1] R. Pol, An infinite-dimensional pre-Hilbert space not homeomorphic to its own square, Proc. Amer. Math. Soc. 90 (1984), 450-454. Zbl0528.54032
  22. [Po2] R. Pol, On metrizable E with C p ( E ) C p ( E ) × C p ( E ) , Mathematika 42 (1995), 49-55. 
  23. [Ro] S. Rolewicz, An example of a normed space non-isomorphic to its product by the real line, Studia Math. 40 (1971), 71-75. Zbl0219.46016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.