Harmonic functions on convex sets and single layer potentials

Eva Pokorná

Časopis pro pěstování matematiky (1977)

  • Volume: 102, Issue: 1, page 50-60
  • ISSN: 0528-2195

How to cite

top

Pokorná, Eva. "Harmonic functions on convex sets and single layer potentials." Časopis pro pěstování matematiky 102.1 (1977): 50-60. <http://eudml.org/doc/21312>.

@article{Pokorná1977,
author = {Pokorná, Eva},
journal = {Časopis pro pěstování matematiky},
language = {eng},
number = {1},
pages = {50-60},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Harmonic functions on convex sets and single layer potentials},
url = {http://eudml.org/doc/21312},
volume = {102},
year = {1977},
}

TY - JOUR
AU - Pokorná, Eva
TI - Harmonic functions on convex sets and single layer potentials
JO - Časopis pro pěstování matematiky
PY - 1977
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 102
IS - 1
SP - 50
EP - 60
LA - eng
UR - http://eudml.org/doc/21312
ER -

References

top
  1. H. Bauer, Нaгmonisсhе Räumе und ihrе Potеntialthеoriе, Springег Vегlag, Bеrlin, 1966. (1966) 
  2. S. Dümmel, On invеrsе pгoblеms for k-dimеnsional potеntials, Nonlinеar ҽvolution еquations and potеntial thеory (pp. 73-93), Aсadеmia, Praha, 1975. (1975) 
  3. G. C. Evans, The logarithmic potential, (Discontinuous Dirichlet and Neumann problems), AMM Colloquium Publications, VI, New York, 1927. (1927) 
  4. G. A. Garrett, Necessary and sufficient conditions for potentials of single and double layers, Amer. J. Math. 58 (1936), 95-129. (1936) Zbl0013.26603MR1507136
  5. L. L. Helms, Introduction to potential theory, Wiley-Interscience, New York, 1969. (1969) Zbl0188.17203MR0261018
  6. R. A. Hunt, R. L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507-527. (1970) Zbl0193.39601MR0274787
  7. D. V. Kapánadze, I. N. Karcivadze, Potentials in a domain with noncompact boundary, (Russian), Thbilis. Sahelmc. Univ. Gamoqeneb. Math. Inst. Šrom. 2 (1969), 13-19. (1969) MR0276486
  8. J. Král, The Fredholm method in potential theory, Trans. Amer. Math. Soc. 125 (1966), 511-547. (1966) MR0209503
  9. J. Král, J. Mařík, Integration with respect to the Hausdorff measure over a smooth surface, (Czech), Časopis Pěst. Mat. 89 (1964), 433-448. (1964) MR0181730
  10. J. Matyska, Approximate differential and Federer normal, Czech. Math. J. 17 (92) (1967), 97-107. (1967) Zbl0162.07601MR0207926
  11. I. Netuka, Generalized Robin problem in potential theory, Czech. Math. J. 22 (97) (1972), 312-324. (1972) Zbl0241.31008MR0294673
  12. I. Netuka, An operator connected with the third boundary value problem in potential theory, Czech. Math. J. 22 (97) (1972), 462-489. (1972) Zbl0241.31009MR0316733
  13. I. Netuka, The third boundary value problem in potential theory, Czech. Math. J. 22 (97) (1972), 554-580. (1972) Zbl0242.31007MR0313528
  14. I. Netuka, Fredholm radius of a potential theoretic operator for convex sets, Časopis Pěst. Mat. 100 (1975), 374-383. (1975) Zbl0314.31006MR0419794
  15. E. D. Solomencev, Harmonic functions representable by Green's type integrals II, (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 834-854. (1967) 
  16. Ch. de la Vallé Poussin, Le potential logarithmique, Gauthier-Villars, Paris, 1949. (1949) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.