Harmonic functions on convex sets and single layer potentials
Časopis pro pěstování matematiky (1977)
- Volume: 102, Issue: 1, page 50-60
- ISSN: 0528-2195
Access Full Article
topHow to cite
topPokorná, Eva. "Harmonic functions on convex sets and single layer potentials." Časopis pro pěstování matematiky 102.1 (1977): 50-60. <http://eudml.org/doc/21312>.
@article{Pokorná1977,
author = {Pokorná, Eva},
journal = {Časopis pro pěstování matematiky},
language = {eng},
number = {1},
pages = {50-60},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Harmonic functions on convex sets and single layer potentials},
url = {http://eudml.org/doc/21312},
volume = {102},
year = {1977},
}
TY - JOUR
AU - Pokorná, Eva
TI - Harmonic functions on convex sets and single layer potentials
JO - Časopis pro pěstování matematiky
PY - 1977
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 102
IS - 1
SP - 50
EP - 60
LA - eng
UR - http://eudml.org/doc/21312
ER -
References
top- H. Bauer, Нaгmonisсhе Räumе und ihrе Potеntialthеoriе, Springег Vегlag, Bеrlin, 1966. (1966)
- S. Dümmel, On invеrsе pгoblеms for k-dimеnsional potеntials, Nonlinеar ҽvolution еquations and potеntial thеory (pp. 73-93), Aсadеmia, Praha, 1975. (1975)
- G. C. Evans, The logarithmic potential, (Discontinuous Dirichlet and Neumann problems), AMM Colloquium Publications, VI, New York, 1927. (1927)
- G. A. Garrett, Necessary and sufficient conditions for potentials of single and double layers, Amer. J. Math. 58 (1936), 95-129. (1936) Zbl0013.26603MR1507136
- L. L. Helms, Introduction to potential theory, Wiley-Interscience, New York, 1969. (1969) Zbl0188.17203MR0261018
- R. A. Hunt, R. L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507-527. (1970) Zbl0193.39601MR0274787
- D. V. Kapánadze, I. N. Karcivadze, Potentials in a domain with noncompact boundary, (Russian), Thbilis. Sahelmc. Univ. Gamoqeneb. Math. Inst. Šrom. 2 (1969), 13-19. (1969) MR0276486
- J. Král, The Fredholm method in potential theory, Trans. Amer. Math. Soc. 125 (1966), 511-547. (1966) MR0209503
- J. Král, J. Mařík, Integration with respect to the Hausdorff measure over a smooth surface, (Czech), Časopis Pěst. Mat. 89 (1964), 433-448. (1964) MR0181730
- J. Matyska, Approximate differential and Federer normal, Czech. Math. J. 17 (92) (1967), 97-107. (1967) Zbl0162.07601MR0207926
- I. Netuka, Generalized Robin problem in potential theory, Czech. Math. J. 22 (97) (1972), 312-324. (1972) Zbl0241.31008MR0294673
- I. Netuka, An operator connected with the third boundary value problem in potential theory, Czech. Math. J. 22 (97) (1972), 462-489. (1972) Zbl0241.31009MR0316733
- I. Netuka, The third boundary value problem in potential theory, Czech. Math. J. 22 (97) (1972), 554-580. (1972) Zbl0242.31007MR0313528
- I. Netuka, Fredholm radius of a potential theoretic operator for convex sets, Časopis Pěst. Mat. 100 (1975), 374-383. (1975) Zbl0314.31006MR0419794
- E. D. Solomencev, Harmonic functions representable by Green's type integrals II, (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 834-854. (1967)
- Ch. de la Vallé Poussin, Le potential logarithmique, Gauthier-Villars, Paris, 1949. (1949)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.