Fredholm radius of a potential theoretic operator for convex sets

Ivan Netuka

Časopis pro pěstování matematiky (1975)

  • Volume: 100, Issue: 4, page 374-383
  • ISSN: 0528-2195

How to cite

top

Netuka, Ivan. "Fredholm radius of a potential theoretic operator for convex sets." Časopis pro pěstování matematiky 100.4 (1975): 374-383. <http://eudml.org/doc/21257>.

@article{Netuka1975,
author = {Netuka, Ivan},
journal = {Časopis pro pěstování matematiky},
language = {eng},
number = {4},
pages = {374-383},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Fredholm radius of a potential theoretic operator for convex sets},
url = {http://eudml.org/doc/21257},
volume = {100},
year = {1975},
}

TY - JOUR
AU - Netuka, Ivan
TI - Fredholm radius of a potential theoretic operator for convex sets
JO - Časopis pro pěstování matematiky
PY - 1975
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 100
IS - 4
SP - 374
EP - 383
LA - eng
UR - http://eudml.org/doc/21257
ER -

References

top
  1. Ju. D. Burago, V. G. Mazja, Some problems in potential theory and function theory for regions with irregular boundaries, (Russian), Zapiski nauč. sem. Leningradskogo otd. MIAN 3 (1967). (1967) 
  2. J. Král, The Fredholm radius of an operator in potential theory, Czechoslovak Math. J. 90 (15) (1965), 454-473, 565-588. (1965) MR0190363
  3. J. Král, The Fredholm method in potential theory, Trans. Amer. Math. Soc. 125 (1966), 511-547. (1966) MR0209503
  4. /. Král, Flows of heat and the Fourier problem, Czechoslovak Math. J. 20 (95) (1970), 556-598. (1970) MR0271554
  5. J. Král I. Netuka, J. Veselý, Potential theory II, (Czech), Lecture Note SPN, Praha, 1972. (1972) 
  6. /. Mařík, The surface integral, Czechoslovak. Math. J. 6 (81) (1956), 522-558. (1956) MR0089891
  7. I. Netuka, Generalized Robin problem in potential theory, Czechoslovak Math. J. 22 (97) (1972), 312-324. (1972) Zbl0241.31008MR0294673
  8. I. Netuka, An operator connected with the third boundary value problem in potential theory, Czechoslovak Math. J. 22 (97) (1972), 462-489. (1972) Zbl0241.31009MR0316733
  9. I. Netuka, Double layer potentials and the Dirichlet problem, Czechoslovak Math. J. 24 (99) (1974), 59-73. (1974) Zbl0308.31008MR0348127
  10. J. Radon, Über die Randwertaufgaben beim logaritmischen Potential, Sitzungsber. Akad. Wiss. Wien (2a) I28 (1919), 1123-1167. (1919) 
  11. F. Riesz, B. Sz. Nagy, Leçons d'analyse fonctionnelle, Akadémiai Kiadó, Budapest, 1952. (1952) Zbl0046.33103

Citations in EuDML Documents

top
  1. Eva Pokorná, Harmonic functions on convex sets and single layer potentials
  2. Dagmar Medková, Solution of the Robin problem for the Laplace equation
  3. Dagmar Medková, The boundary-value problems for Laplace equation and domains with nonsmooth boundary
  4. Dagmar Medková, Continuous extendibility of solutions of the Neumann problem for the Laplace equation
  5. Dagmar Medková, Continuous extendibility of solutions of the third problem for the Laplace equation
  6. Dagmar Medková, Boundedness of the solution of the third problem for the Laplace equation
  7. Dagmar Medková, Solution of the Dirichlet problem for the Laplace equation
  8. Josef Král, Jiří Veselý, Sixty years of Ivan Netuka

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.