Generalized Robin problem in potential theory

Ivan Netuka

Czechoslovak Mathematical Journal (1972)

  • Volume: 22, Issue: 2, page 312-324
  • ISSN: 0011-4642

How to cite

top

Netuka, Ivan. "Generalized Robin problem in potential theory." Czechoslovak Mathematical Journal 22.2 (1972): 312-324. <http://eudml.org/doc/12660>.

@article{Netuka1972,
author = {Netuka, Ivan},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {2},
pages = {312-324},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized Robin problem in potential theory},
url = {http://eudml.org/doc/12660},
volume = {22},
year = {1972},
}

TY - JOUR
AU - Netuka, Ivan
TI - Generalized Robin problem in potential theory
JO - Czechoslovak Mathematical Journal
PY - 1972
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 22
IS - 2
SP - 312
EP - 324
LA - eng
UR - http://eudml.org/doc/12660
ER -

References

top
  1. Ju. D. Biirago, V. G. Mazja, Some questions in potential theory and function theory for regions with irregular boundaries, (Russian), Zapiski nauc. sem. Leningrad, otd. MIAN 3 (1967). (1967) 
  2. Ju. D. Burago V. G. Mazja, V. D. Sapoznikova, On the theory of potentials of a double and a simple layer for regions with irregular boundaries, (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 3-34. Izdat. Leningrad. Univ., Leningrad, 1966. (1966) MR0213596
  3. С. Constantinescu, A. Cornea, Ideale Ränder Riemannscher Flächen, Springer Verlag, Berlin, 1963. (1963) Zbl0112.30801
  4. N. Dunford, J. T. Schwartz, Linear operators. Part I, Interscience Publishers, New York, 1958. (1958) MR0117523
  5. E. De Giorgi, Nuovi teoremi relativi alle misure (r - l)-dimensionali in uno spazio ad r dimensioni, Ricerche di Matematica 4 (1955), 95-113. (1955) MR0074499
  6. J. L. Doob, Boundary properties of functions with finite Dirichlet integrals, Ann. Inst. Fourier 12 (1966), 573-621. (1966) MR0173783
  7. G. F. D. Duff, Partial differential equations, Oxford University Press, 1956. (1956) Zbl0071.30903MR0078550
  8. H. Federer, 10.1090/S0002-9947-1945-0013786-6, Trans. Amer. Math. Soc. 58 (1945), 44-76. (1945) Zbl0060.14102MR0013786DOI10.1090/S0002-9947-1945-0013786-6
  9. H. Federer, 10.1090/S0002-9939-1958-0095245-2, Proc. Amer. Math. Soc. 9 (1958), 447-451. (1958) Zbl0087.27302MR0095245DOI10.1090/S0002-9939-1958-0095245-2
  10. N. M. Günther, Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der mathematischen Physik, Leipzig, 1957. (1957) 
  11. O. D. Kellogg, Foundations of potential theory, Springer Verlag, Berlin, 1929. (1929) MR0222317
  12. J. Král, 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511-547. (1966) MR0209503DOI10.2307/1994580
  13. J. Král, Flows of heat and the Fourier problem, Czechoslovak Math. J. 20 (95) (1970), 556-598. (1970) MR0271554
  14. F. Y. Maeda, Normal derivatives on an ideal boundary, J. Sci. Hiroshima Univ. Ser. A-1 28 (1964), 113-131. (1964) Zbl0192.20402MR0177126
  15. I. Netuka, Smooth surfaces with infinite cyclic variation (Czech), Časopis pro pěstování matematiky 96 (1971), 86-101. (1971) MR0284553
  16. I. Netuka, The Robin problem in potential theory, Comment. Math. Univ. Carolinae 12 (1971), 205-211. (1971) Zbl0215.42602MR0287021
  17. I. Netuka, An operator connected with the third boundary value problem in potential theory, Czechoslovak Math. J. 22 (97), (1972) (to appear). (1972) Zbl0241.31009MR0316733
  18. I. Netuka, The third boundary value problem in potential theory, Czechoslovak Math. J. 22 (97), (1972) (to appear). (1972) Zbl0242.31007MR0313528
  19. J. Plemelj, Potentialtheoretische Untersuchungen, Leipzig, 1911. (1911) 
  20. J. Radon, Über die Randwertaufgaben beim logarithmischen Potential, Sitzungsber. Akad. Wiss. Wien (2a) 128 (1919), 1123-1167. (1919) 
  21. V. D. Sapoznikova, Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 35 - 44, Izdat. Leningrad. Univ., Leningrad, 1966. (1966) MR0213597
  22. L. С Young, A theory of boundary values, Proc. London Math. Soc. (3) 14A (1965), 300-314. (1965) Zbl0147.07802MR0180891

Citations in EuDML Documents

top
  1. Ivan Netuka, The third boundary value problem in potential theory
  2. Josef Král, A note on the Robin problem in potential theory (Preliminary communication)
  3. Eva Pokorná, Harmonic functions on convex sets and single layer potentials
  4. Ivan Netuka, Fredholm radius of a potential theoretic operator for convex sets
  5. Ivan Netuka, An operator connected with the third boundary value problem in potential theory
  6. Josef Král, Dagmar Medková, Essential norms of a potential theoretic boundary integral operator in L 1
  7. Dagmar Medková, Solution of the Robin problem for the Laplace equation
  8. Dagmar Medková, The boundary-value problems for Laplace equation and domains with nonsmooth boundary
  9. Ivan Netuka, Double layer potentials and the Dirichlet problem
  10. Dagmar Medková, The third boundary value problem in potential theory for domains with a piecewise smooth boundary

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.